Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optimal ablation strategies for different types of ventricular tachycardias

Abstract

Ablation strategies for almost all types of ventricular tachycardias have now been established. The optimal ablation strategy for ventricular tachycardia is determined by the site of origin and the electrophysiological mechanisms. Electrocardiograms, an understanding of the common sites of basic disease, and identification of the scar site using imaging modalities might be helpful for predicting the originating location. Electrophysiological activation mapping is the gold standard for identification of the ventricular tachycardia substrate. However, when activation mapping of scar-related ventricular tachycardias is not possible, substrate mapping might be performed to identify isolated diastolic potentials. Substrates are commonly located in the endocardium, but transvenous or subxiphoidal intrapericardial approaches can be used to map epicardial substrates. Unusual types of ventricular tachycardia might require special strategies, such as transcoronary ethanol or intramural needle ablation. For idiopathic ventricular tachycardias, ablation might be a first-line therapy because of its high efficacy and very low risk of complications. However, the recurrence rate of scar-related ventricular tachycardias remains considerable, and ablation remains an adjunctive therapy to medical therapy and implantable cardioverter-defibrillators. When incessant ventricular tachycardia or fibrillation requiring defibrillator therapy (electrical storm) is refractory to antiarrhythmic drugs, neuraxial modulation, including sedation, might be the next option before catheter ablation is attempted.

Key Points

  • The optimal ablation strategy for ventricular tachycardia is determined by the site of origin and the electrophysiological mechanism

  • Prediction of the origin site requires consideration of surface electrocardiographic findings, ascertainment of the underlying cardiac disease (if any), and identification of regions of myocardial scarring using imaging modalities

  • Electrophysiological activation mapping to locate the earliest ventricular activation during focal ventricular tachycardias, and mid-diastolic potentials during re-entrant ventricular tachycardias, is the gold standard for identifying the substrate

  • When activation mapping of scar-related ventricular tachycardias is not possible, substrate mapping during sinus rhythm (to identify late or isolated diastolic potentials) is the preferred option

  • Catheter ablation of ventricular tachycardias is most often successful with an endocardial approach, but epicardial ablation using transvenous or subxiphoidal intrapericardial approaches is sometimes successful

  • Special ablation strategies might be required for unusual forms of ventricular tachycardias—those with intramural substrates or associated with electrical storm

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Site of successful ablation of premature ventricular contractions within the left coronary cusp of the aorta.
Figure 2: Pace map and activation maps of PVCs originating from the free wall of the right ventricular outflow tract.
Figure 3: Fluoroscopic images showing site of successful ablation of epicardial ventricular arrhythmias.
Figure 4: Cardiac tracings from patients with various forms of ventricular tachycardia.
Figure 5: Radiofrequency catheter ablation at a site with an isolated diastolic potential in a patient with a remote myocardial infarction.
Figure 6: Ablation strategies for ventricular tachycardias.

Similar content being viewed by others

References

  1. Stevenson, W. G. & Soejima, K. Catheter ablation for ventricular tachycardia. Circulation 115, 2750–2760 (2007).

    PubMed  Google Scholar 

  2. Aliot, E. M. et al. EHRA/HRS expert consensus on catheter ablation of ventricular arrhythmias: developed in a partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA). Heart Rhythm 6, 886–933 (2009).

    PubMed  Google Scholar 

  3. Bänsch, D. et al. Successful catheter ablation of electrical storm after myocardial infarction. Circulation 108, 3011–3016 (2003).

    PubMed  Google Scholar 

  4. Schreieck, J., Zrenner, B., Deisenhofer, I. & Schmitt, C. Rescue ablation of electrical storm in patients with ischemic cardiomyopathy: a potential-guided ablation approach by modifying substrate of intractable, unmappable ventricular tachycardias. Heart Rhythm 2, 10–14 (2005).

    PubMed  Google Scholar 

  5. Okada, T. et al. Mapping and ablation of trigger premature ventricular contractions in a case of electrical storm associated with ischemic cardiomyopathy. Pacing Clin. Electrophysiol. 30, 440–443 (2007).

    PubMed  Google Scholar 

  6. Carbucicchio, C. et al. Catheter ablation for the treatment of electrical storm in patients with implantable cardioverter-defibrillators: short- and long-term outcomes in a prospective single-center study. Circulation 117, 462–469 (2008).

    PubMed  Google Scholar 

  7. Nogami, A. et al. Demonstration of diastolic and presystolic Purkinje potentials as critical potentials in a macroreentry circuit of verapamil-sensitive idiopathic left ventricular tachycardia. J. Am. Coll. Cardiol. 36, 811–823 (2000).

    CAS  PubMed  Google Scholar 

  8. Lin, D. et al. Idiopathic fascicular left ventricular tachycardia: linear ablation lesion strategy for noninducible or nonsustained tachycardia. Heart Rhythm 2, 934–939 (2005).

    PubMed  Google Scholar 

  9. Daniels, D. V. et al. Idiopathic epicardial left ventricular tachycardia originating remote from the sinus of Valsalva: electrophysiological characteristics, catheter ablation, and identification from the 12-lead electrocardiogram. Circulation 113, 1659–1666 (2006).

    PubMed  Google Scholar 

  10. Yamada, T. et al. Idiopathic ventricular arrhythmias originating from the left ventricular summit: anatomic concepts relevant to ablation. Circ. Arrhythm. Electrophysiol. 3, 616–623 (2010).

    PubMed  Google Scholar 

  11. Sosa, E., Scanavacca, M., D' Avila, A., Oliveira, F. & Ramires, J. A. Nonsurgical transthoracic epicardial catheter ablation to treat recurrent ventricular tachycardia occurring late after myocardial infarction. J. Am. Coll. Cardiol. 35, 1442–1449 (2000).

    CAS  PubMed  Google Scholar 

  12. Soejima, K. et al. Endocardial and epicardial radiofrequency ablation of ventricular tachycardia associated with dilated cardiomyopathy: the importance of low-voltage scars. J. Am. Coll. Cardiol. 43, 1834–1842 (2004).

    PubMed  Google Scholar 

  13. Marchlinski, F. E. et al. Electroanatomic substrate and outcome of catheter ablative therapy for ventricular tachycardia in setting of right ventricular cardiomyopathy. Circulation 110, 2293–2298 (2004).

    PubMed  Google Scholar 

  14. Haïssaguerre, M. et al. Mapping and ablation of idiopathic ventricular fibrillation. Circulation 106, 962–967 (2002).

    PubMed  Google Scholar 

  15. Sacher, F. et al. Transcoronary ethanol ventricular tachycardia ablation in the modern electrophysiology era. Heart Rhythm 5, 62–68 (2008).

    PubMed  Google Scholar 

  16. Sapp, J. L., Cooper, J. M., Zei, P. & Stevenson, W. G. Large radiofrequency ablation lesions can be created with a retractable infusion-needle catheter. J. Cardiovasc. Electrophysiol. 17, 657–661 (2006).

    PubMed  Google Scholar 

  17. Stevenson, W. G. et al. Radiofrequency catheter ablation of ventricular tachycardia after myocardial infarction. Circulation 98, 308–314 (1998).

    CAS  PubMed  Google Scholar 

  18. Stevenson, W. G. et al. Irrigated radiofrequency catheter ablation guided by electroanatomic mapping for recurrent ventricular tachycardia after myocardial infarction: the multicenter thermocool ventricular tachycardia ablation trial. Circulation 118, 2773–2782 (2008).

    PubMed  Google Scholar 

  19. Gonska, B. D. et al. Catheter ablation of ventricular tachycardia in 136 patients with coronary artery disease: results and long-term follow-up. J. Am. Coll. Cardiol. 24, 1506–1514 (1994).

    CAS  PubMed  Google Scholar 

  20. Rothman, S. A. et al. Radiofrequency catheter ablation of postinfarction ventricular tachycardia: long-term success and the significance of inducible nonclinical arrhythmias. Circulation 96, 3499–3508 (1997).

    CAS  PubMed  Google Scholar 

  21. Strickberger, S. A. et al. A prospective evaluation of catheter ablation of ventricular tachycardia as adjuvant therapy in patients with coronary artery disease and an implantable cardioverter-defibrillator. Circulation 96, 1525–1531 (1997).

    CAS  PubMed  Google Scholar 

  22. Marchlinski, F. E., Callans, D. J., Gottlieb, C. D. & Zado, E. Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation 101, 1288–1296 (2000).

    CAS  PubMed  Google Scholar 

  23. Delacretaz, E., Stevenson, W. G., Ellison, K. E., Maisel, W. H. & Friedman, P. L. Mapping and radiofrequency catheter ablation of the three types of sustained monomorphic ventricular tachycardia in nonischemic heart disease. J. Cardiovasc. Electrophysiol. 11, 11–17 (2000).

    CAS  PubMed  Google Scholar 

  24. Dukkipati S. R. et al. Long-term outcomes of combined epicardial and endocardial ablation of monomorphic ventricular tachycardia related to hypertrophic cardiomyopathy. Circ. Arrhythm. Electrophysiol. 4, 185–194 (2011).

    PubMed  Google Scholar 

  25. Zeppenfeld, K. et al. Catheter ablation of ventricular tachycardia after repair of congenital heart disease: electroanatomic identification of the critical right ventricular isthmus. Circulation 116, 2241–2252 (2007).

    CAS  PubMed  Google Scholar 

  26. Bai, R. et al. Ablation of ventricular arrhythmias in arrhythmogenic right ventricular dysplasia/cardiomyopathy: arrhythmia-free survival after endo-epicardial substrate based mapping and ablation. Circ. Arrhythm. Electrophysiol. 4, 478–485 (2011).

    PubMed  Google Scholar 

  27. Koplan, B. A., Soejima, K., Baughman, K., Epstein, L. M. & Stevenson, W. G. Refractory ventricular tachycardia secondary to cardiac sarcoid: electrophysiologic characteristics, mapping, and ablation. Heart Rhythm 3, 924–929 (2006).

    PubMed  Google Scholar 

  28. Sosa, E. et al. Endocardial and epicardial ablation guided by nonsurgical transthoracic epicardial mapping to treat recurrent ventricular tachycardia. J. Cardiovasc. Electrophysiol. 9, 229–239 (1998).

    CAS  PubMed  Google Scholar 

  29. Valdigem, B. P. et al. Ablation of ventricular tachycardia in chronic chagasic cardiomyopathy with giant basal aneurysm: carto sound, CT, and MRI merge. Circ. Arrhythm. Electrophysiol. 4, 112–114 (2011).

    PubMed  Google Scholar 

  30. Tada, H. et al. Idiopathic ventricular arrhythmia arising from the mitral annulus: a distinct subgroup of idiopathic ventricular arrhythmias. J. Am. Coll. Cardiol. 45, 877–886 (2005).

    PubMed  Google Scholar 

  31. Yamada, T. et al. Idiopathic focal ventricular arrhythmias originating from the anterior papillary muscle in the left ventricle. J. Cardiovasc. Electrophysiol. 20, 866–872 (2009).

    PubMed  Google Scholar 

  32. Josephson, M. E. Clinical cardiac Electrophysiology: Techniques and Interpretations 4th edn (Lippincott Williams & Wilkins, New York, 2008).

    Google Scholar 

  33. Yamada, T. et al. Idiopathic ventricular arrhythmias originating from the papillary muscles in the left ventricle: prevalence, electrocardiographic and electrophysiological characteristics, and results of the radiofrequency catheter ablation. J. Cardiovasc. Electrophysiol. 21, 62–69 (2010).

    PubMed  Google Scholar 

  34. Ouyang, F. et al. Repetitive monomorphic ventricular tachycardia originating from the aortic sinus cusp: electrocardiographic characterization for guiding catheter ablation. J. Am. Coll. Cardiol. 39, 500–508 (2002).

    PubMed  Google Scholar 

  35. Kanagaratnam, L. et al. Ventricular tachycardias arising from the aortic sinus of Valsalva: an under-recognized variant of left outflow tract ventricular tachycardia. J. Am. Coll. Cardiol. 37, 1408–1414 (2001).

    CAS  PubMed  Google Scholar 

  36. Sekiguchi, Y. et al. Electrocardiographic and electrophysiologic characteristics of ventricular tachycardia originating within the pulmonary artery. J. Am. Coll. Cardiol. 45, 887–895 (2005).

    PubMed  Google Scholar 

  37. Tada, H. et al. Idiopathic ventricular arrhythmias originating from the tricuspid annulus: prevalence, electrocardiographic characteristics, and results of radiofrequency catheter ablation. Heart Rhythm 4, 7–16 (2007).

    PubMed  Google Scholar 

  38. Yamada, T. et al. Idiopathic ventricular arrhythmias originating from the aortic root: prevalence, electrocardiographic and electrophysiologic characteristics, and results of radiofrequency catheter ablation. J. Am. Coll. Cardiol. 52, 139–147 (2008).

    PubMed  Google Scholar 

  39. Yamada, T., McElderry, H. T., Doppalapudi, H. & Kay, G. N. Catheter ablation of ventricular arrhythmias originating in the vicinity of the His bundle: significance of mapping the aortic sinus cusp. Heart Rhythm 5, 37–42 (2008).

    PubMed  Google Scholar 

  40. Yamada, T. et al. Electrocardiographic characteristics of ventricular arrhythmias originating from the junction of the left and right coronary sinuses of Valsalva in the aorta: the activation pattern as a rationale for the electrocardiographic characteristics. Heart Rhythm 5, 184–192 (2008).

    PubMed  Google Scholar 

  41. Doppalapudi, H. et al. Ventricular tachycardia originating from the posterior papillary muscle in the left ventricle: a distinct clinical syndrome. Circ. Arrhythm. Electrophysiol. 1, 23–29 (2008).

    PubMed  Google Scholar 

  42. Good, E. et al. Ventricular arrhythmias originating from a papillary muscle in patients without prior infarction: a comparison with fascicular arrhythmias. Heart Rhythm 5, 1530–1537 (2008).

    PubMed  Google Scholar 

  43. Obel, O. A. et al. Ablation of left ventricular epicardial outflow tract tachycardia from the distal great cardiac vein. J. Am. Coll. Cardiol. 48, 1813–1817 (2006).

    PubMed  Google Scholar 

  44. Doppalapudi, H., Yamada, T., Ramaswamy, K., Ahn, J. & Kay, G. N. Idiopathic focal epicardial ventricular tachycardia originating from the crux of the heart. Heart Rhythm 6, 44–50 (2009).

    PubMed  Google Scholar 

  45. Kumagai, K., Takahashi, A., Yamauchi, Y. & Aonuma, K. Ventricular tachycardia originating from the epicardium identified by intracoronary mapping using a PTCA guidewire. J. Cardiovasc. Electrophysiol. 17, 670–673 (2006).

    PubMed  Google Scholar 

  46. Baman, T. S. et al. Mapping and ablation of epicardial idiopathic ventricular arrhythmias from within the coronary venous system. Circ. Arrhythm. Electrophysiol. 3, 274–279 (2010).

    PubMed  Google Scholar 

  47. Azegami, K., Wilber, D. J., Arruda, M., Lin, A. C. & Denman, R. A. Spatial resolution of pacemapping and activation mapping in patients with idiopathic right ventricular outflow tract tachycardia. J. Cardiovasc. Electrophysiol. 16, 823–829 (2005).

    PubMed  Google Scholar 

  48. Man, K. C. et al. Accuracy of the unipolar electrogram for identification of the site of origin of ventricular activation. J. Cardiovasc. Electrophysiol. 8, 974–979 (1997).

    CAS  PubMed  Google Scholar 

  49. Coggins, D. L. et al. Radiofrequency catheter ablation as a cure for idiopathic tachycardia of both left and right ventricular origin. J. Am. Coll. Cardiol. 23, 1333–1341 (1994).

    CAS  PubMed  Google Scholar 

  50. Bogun, F. et al. Spatial resolution of pace mapping of idiopathic ventricular tachycardia/ectopy originating in the right ventricular outflow tract. Heart Rhythm 5, 339–344 (2008).

    PubMed  Google Scholar 

  51. Yamada, T. et al. Preferential conduction across the ventricular outflow septum in ventricular arrhythmias originating from the aortic sinus cusp. J. Am. Coll. Cardiol. 50, 884–891 (2007).

    PubMed  Google Scholar 

  52. Yamada, T. et al. Electrocardiographic and electrophysiological characteristics in idiopathic ventricular arrhythmias originating from the papillary muscles in the left ventricle: relevance for catheter ablation. Circ. Arrhythm. Electrophysiol. 3, 324–331 (2010).

    PubMed  Google Scholar 

  53. Callans, D. J. Catheter ablation of idiopathic ventricular tachycardia arising from the aortic root. J. Cardiovasc. Electrophysiol. 20, 969–972 (2009).

    PubMed  Google Scholar 

  54. Seiler, J., Lee, J. C., Roberts-Thomson, K. C. & Stevenson, W. G. Intracardiac echocardiography guided catheter ablation of incessant ventricular tachycardia from the posterior papillary muscle causing tachycardia-mediated cardiomyopathy. Heart Rhythm 6, 389–392 (2009).

    PubMed  Google Scholar 

  55. Yamada, T., McElderry, H. T., Doppalapudi, H. & Kay, G. N. Real-time integration of intracardiac echocardiography and electroanatomic mapping in PVCs arising from the LV anterior papillary muscle. Pacing Clin. Electrophysiol. 32, 1240–1243 (2009).

    PubMed  Google Scholar 

  56. Yamada, T., Litovsky, S. H. & Kay, G. N. The left ventricular ostium: an anatomic concept relevant to idiopathic ventricular arrhythmias. Circ. Arrhythmia. Electrophysiol. 1, 396–404 (2008).

    Google Scholar 

  57. D'Avila, A. et al. Effects of radiofrequency pulses delivered in the vicinity of the coronary arteries: implications for nonsurgical transthoracic epicardial catheter ablation to treat ventricular tachycardia. Pacing Clin. Electrophysiol. 25, 1488–1495 (2002).

    PubMed  Google Scholar 

  58. Yamada, T. & Kay, G. N. In Epicardial interventions in electrophysiology, an issue of cardiac electrophysiology clinics. (eds. Shivkumar, K. et al.) 127–134 (Elsevier, Philadelphia, 2010). [The clinics: internal medicine].

    Google Scholar 

  59. D'Avila, A. et al. Catheter ablation of ventricular epicardial tissue: a comparison of standard and cooled-tip radiofrequency energy. Circulation 109, 2363–2369 (2004).

    PubMed  Google Scholar 

  60. Yamane, T. et al. Efficacy and safety of an irrigated-tip catheter for the ablation of accessory pathways resistant to conventional radiofrequency ablation. Circulation 102, 2565–2568 (2000).

    CAS  PubMed  Google Scholar 

  61. Stevenson, W. G., Cooper, J. & Sapp, J. Optimizing RF output for cooled RF ablation. J. Cardiovasc. Electrophysiol. 15, S24–S27 (2004).

    PubMed  Google Scholar 

  62. Nakagawa, H. et al. Radiofrequency catheter ablation of idiopathic left ventricular tachycardia guided by a Purkinje potential. Circulation 88, 2607–2617 (1993).

    CAS  PubMed  Google Scholar 

  63. Nogami, A. et al. Verapamil-sensitive left anterior fascicular ventricular tachycardia: results of radiofrequency ablation in six patients. J. Cardiovasc. Electrophysiol. 9, 1269–1278 (1998).

    CAS  PubMed  Google Scholar 

  64. Tsuchiya, T. et al. Significance of late diastolic potential preceding Purkinje potential in verapamil-sensitive idiopathic left ventricular tachycardia. Circulation 99, 2408–2413 (1999).

    CAS  PubMed  Google Scholar 

  65. Nogami, A. Idiopathic left ventricular tachycardia: assessment and treatment. Card. Electrophysiol. Rev. 6, 448–457 (2002).

    PubMed  Google Scholar 

  66. Tsuchiya, T., Okumura, K., Honda, T., Iwasa, A. & Ashikaga, K. Effects of verapamil and lidocaine on two components of the re-entry circuit of verapamil-senstitive idiopathic left ventricular tachycardia. J. Am. Coll. Cardiol. 37, 1415–1421 (2001).

    CAS  PubMed  Google Scholar 

  67. Ouyang, F. et al. Electroanatomic substrate of idiopathic left ventricular tachycardia: unidirectional block and macroreentry within the purkinje network. Circulation 105, 462–469 (2002).

    PubMed  Google Scholar 

  68. de Bakker, J. M. et al. Slow conduction in the infarcted human heart. 'Zigzag' course of activation. Circulation 88, 915–926 (1993).

    CAS  PubMed  Google Scholar 

  69. Marchlinski, F. E. et al. Electroanatomic substrate and outcome of catheter ablative therapy for ventricular tachycardia in setting of right ventricular cardiomyopathy. Circulation 110, 2293–2298 (2004).

    PubMed  Google Scholar 

  70. Stevenson, W. G. et al. Exploring postinfarction reentrant ventricular tachycardia with entrainment mapping. J. Am. Coll. Cardiol. 29, 1180–1189 (1997).

    CAS  PubMed  Google Scholar 

  71. Soejima, K. et al. The N + 1 difference: a new measure for entrainment mapping. J. Am. Coll. Cardiol. 37, 1386–1394 (2001).

    CAS  PubMed  Google Scholar 

  72. Schalij, M. J., van Rugge, F. P., Siezenga, M. & van der Velde, E. T. Endocardial activation mapping of ventricular tachycardia in patients: first application of a 32-site bipolar mapping electrode catheter. Circulation 98, 2168–2179 (1998).

    CAS  PubMed  Google Scholar 

  73. Schilling, R. J., Peters, N. S. & Davies, D. W. Feasibility of a noncontact catheter for endocardial mapping of human ventricular tachycardia. Circulation 99, 2543–2552 (1999).

    CAS  PubMed  Google Scholar 

  74. Strickberger, S. A., Knight, B. P., Michaud, G. F., Pelosi, F. & Morady, F. Mapping and ablation of ventricular tachycardia guided by virtual electrograms using a noncontact, computerized mapping system. J. Am. Coll. Cardiol. 35, 414–421 (2000).

    CAS  PubMed  Google Scholar 

  75. Miller, M. A. et al. Activation and entrainment mapping of hemodynamically unstable ventricular tachycardia using a percutaneous left ventricular assist device. J. Am. Coll. Cardiol. 58, 1363–1371 (2011).

    PubMed  Google Scholar 

  76. Harada, T., Stevenson, W. G., Kocovic, D. Z. & Friedman, P. L. Catheter ablation of ventricular tachycardia after myocardial infarction: relation of endocardial sinus rhythm late potentials to the reentry circuit. J. Am. Coll. Cardiol. 30, 1015–1023 (1997).

    CAS  PubMed  Google Scholar 

  77. Bogun, F. et al. Analysis during sinus rhythm of critical sites in reentry circuits of postinfarction ventricular tachycardia. J. Interv. Card. Electrophysiol. 7, 95–103 (2002).

    PubMed  Google Scholar 

  78. Polin, G. M. et al. Endocardial unipolar voltage mapping to identify epicardial substrate in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart Rhythm 8, 76–83 (2011).

    PubMed  Google Scholar 

  79. Soejima, K. et al. Catheter ablation in patients with multiple and unstable ventricular tachycardias after myocardial infarction: short ablation lines guided by reentry circuit isthmuses and sinus rhythm mapping. Circulation 104, 664–669 (2001).

    CAS  PubMed  Google Scholar 

  80. Cano, O. et al. Electroanatomic substrate and ablation outcome for suspected epicardial ventricular tachycardia in left ventricular nonischemic cardiomyopathy. J. Am. Coll. Cardiol. 54, 799–808 (2009).

    PubMed  Google Scholar 

  81. Nakahara, S. et al. Characterization of the arrhythmogenic substrate in ischemic and nonischemic cardiomyopathy implications for catheter ablation of hemodynamically unstable ventricular tachycardia. J. Am. Coll. Cardiol. 55, 2355–2365 (2010).

    PubMed  PubMed Central  Google Scholar 

  82. Soejima, K., Stevenson, W. G., Maisel, W. H., Sapp, J. L. & Epstein, L. M. Electrically unexcitable scar mapping based on pacing threshold for identification of the reentry circuit isthmus: feasibility for guiding ventricular tachycardia ablation. Circulation 106, 1678–1683 (2002).

    PubMed  Google Scholar 

  83. Brunckhorst, C. B. et al. Identification of the ventricular tachycardia isthmus after infarction by pace mapping. Circulation 110, 652–659 (2004).

    PubMed  Google Scholar 

  84. Bogun, F. et al. Isolated potentials during sinus rhythm and pace-mapping within scars as guides for ablation of post-infarction ventricular tachycardia. J. Am. Coll. Cardiol. 47, 2013–2019 (2006).

    PubMed  Google Scholar 

  85. Sosa, E. & Scanavacca, M. Epicardial mapping and ablation techniques to control ventricular tachycardia. J. Cardiovasc. Electrophysiol. 16, 449–452 (2005).

    PubMed  Google Scholar 

  86. Yamada, T., Plumb, V. J., Tabereaux, P. B. & Kay, G. N. Epicardial macro-reentrant ventricular tachycardia exhibiting an endocardial centrifugal activation pattern in a case with arrhythmogenic right ventricular cardiomyopathy. J. Cardiovasc. Electrophysiol. 20, 692–695 (2009).

    PubMed  Google Scholar 

  87. Hutchinson, M. D. et al. Endocardial unipolar voltage mapping to detect epicardial ventricular tachycardia substrate in patients with nonischemic left ventricular cardiomyopathy. Circ. Arrhythm. Electrophysiol. 4, 49–55 (2011).

    PubMed  Google Scholar 

  88. Michowitz, Y. et al. Hybrid procedures for epicardial catheter ablation of ventricular tachycardia: value of surgical access. Heart Rhythm 7, 1635–1643 (2010).

    PubMed  Google Scholar 

  89. Soejima, K. et al. Subxiphoid surgical approach for epicardial catheter-based mapping and ablation in patients with prior cardiac surgery or difficult pericardial access. Circulation 110, 1197–1201 (2004).

    PubMed  Google Scholar 

  90. Marchlinski, F. E., Callans, D. J., Gottlieb, C. D. & Zado, E. Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation 101, 1288–1296 (2000).

    CAS  PubMed  Google Scholar 

  91. Blanck, Z. et al. Bundle branch reentrant ventricular tachycardia: cumulative experience in 48 patients. J. Cardiovasc. Electrophysiol. 4, 253–262 (1993).

    CAS  PubMed  Google Scholar 

  92. Merino, J. L., Peinado, R., Fernández-Lozano, I., Sobrino, N. & Sobrino, J. A. Transient entrainment of bundle-branch reentry by atrial and ventricular stimulation: elucidation of the tachycardia mechanism through analysis of the surface ECG. Circulation 100, 1784–1790 (1999).

    CAS  PubMed  Google Scholar 

  93. Stevenson, W. G. & Delacretaz, E. Radiofrequency catheter ablation of ventricular tachycardia. Heart 84, 553–559 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Haïssaguerre, M. et al. Mapping and ablation of idiopathic ventricular fibrillation. Circulation 106, 962–967 (2002).

    PubMed  Google Scholar 

  95. Noda, T. et al. Malignant entity of idiopathic ventricular fibrillation and polymorphic ventricular tachycardia initiated by premature extrasystoles originating from the right ventricular outflow tract. J. Am. Coll. Cardiol. 46, 1288–1294 (2005).

    PubMed  Google Scholar 

  96. Haïssaguerre, M. et al. Mapping and ablation of ventricular fibrillation associated with long-QT and Brugada syndromes. Circulation 108, 925–928 (2003).

    PubMed  Google Scholar 

  97. Marrouche, N. F. et al. Mode of initiation and ablation of ventricular fibrillation storms in patients with ischemic cardiomyopathy. J. Am. Coll. Cardiol. 43, 1715–1720 (2004).

    PubMed  Google Scholar 

  98. Szumowski, L. et al. Mapping and ablation of polymorphic ventricular tachycardia after myocardial infarction. J. Am. Coll. Cardiol. 44, 1700–1706 (2004).

    PubMed  Google Scholar 

  99. Kay, G. N. et al. Intracoronary ethanol ablation for the treatment of recurrent sustained ventricular tachycardia. J. Am. Coll. Cardiol. 19, 159–168 (1992).

    CAS  PubMed  Google Scholar 

  100. Thiagalingam, A., Campbell, C. R., Boyd, A., Ross, D. L. & Kovoor, P. Catheter intramural needle radiofrequency ablation creates deeper lesions than irrigated tip catheter ablation. Pacing Clin. Electrophysiol. 26, 2146–2150 (2003).

    PubMed  Google Scholar 

  101. Sapp, J. L. et al. Deep myocardial ablation lesions can be created with a retractable needle-tipped catheter. Pacing Clin. Electrophysiol. 27, 594–599 (2004).

    PubMed  Google Scholar 

  102. Thiagalingam, A. et al. Cooled needle catheter ablation creates deeper and wider lesions than irrigated tip catheter ablation. J. Cardiovasc. Electrophysiol. 16, 508–515 (2005).

    PubMed  Google Scholar 

  103. Bourke, T. et al. Neuraxial modulation for refractory ventricular arrhythmias: value of thoracic epidural anesthesia and surgical left cardiac sympathetic denervation. Circulation 121, 2255–2262 (2010).

    PubMed  PubMed Central  Google Scholar 

  104. Issa, Z. F. & Zipes D. P. Antiarrhythmic effects of targeted cardiac neuromodulation: is it time for clinical application? Heart Rhythm 2, 1363–1364 (2005).

    PubMed  Google Scholar 

  105. Vaseghi, M. & Shivkumar, K. The role of the autonomic nervous system in sudden cardiac death. Prog. Cardiovasc. Dis. 50, 404–419 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Mahajan, A., Moore, J., Cesario, D. A. & Shivkumar, K. Use of thoracic epidural anesthesia for management of electrical storm: a case report. Heart Rhythm 2, 1359–1362 (2005).

    PubMed  Google Scholar 

  107. Schwartz, P. J. et al. Left cardiac sympathetic denervation in the therapy of congenital long QT syndrome: a worldwide report. Circulation 84, 503–511 (1991).

    CAS  PubMed  Google Scholar 

  108. Ouriel, K. & Moss, A. J. Long QT syndrome: an indication for cervicothoracic sympathectomy. Cardiovasc. Surg. 3, 475–478 (1995).

    CAS  PubMed  Google Scholar 

  109. Schwartz, P. J. et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation 109, 1826–1833 (2004).

    PubMed  Google Scholar 

  110. Collura, C. A., Johnson, J. N., Moir, C. & Ackerman, M. J. Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery. Heart Rhythm 6, 752–759 (2009).

    PubMed  Google Scholar 

  111. Wilde, A. A. et al. Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N. Engl. J. Med. 358, 2024–2029 (2008).

    CAS  PubMed  Google Scholar 

  112. Atallah, J. et al. Video-assisted thoracoscopic cardiac denervation: a potential novel therapeutic option for children with intractable ventricular arrhythmias. Ann. Thorac. Surg. 86, 1620–1625 (2008).

    PubMed  Google Scholar 

  113. De Ferrari, G. M. et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur. Heart. J. 32, 847–855 (2011).

    CAS  PubMed  Google Scholar 

  114. Issa, Z. F. et al. Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model. Circulation 111, 3217–3220 (2005).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T. Yamada researched the data for the article, provided a substantial contribution to discussions of the content, and wrote the article. G. N. Kay reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Takumi Yamada.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, T., Kay, G. Optimal ablation strategies for different types of ventricular tachycardias. Nat Rev Cardiol 9, 512–525 (2012). https://doi.org/10.1038/nrcardio.2012.74

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing