Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vascular access and closure in coronary angiography and percutaneous intervention

Abstract

The key feature defining transcatheter cardiovascular interventions is that access to the vessels and heart is achieved by arterial puncture with a needle, rather than surgical incision with a scalpel. However, arteriotomy and vessel closure are performed without direct visualization of the arterial wall, which risks vessel damage and bleeding. Vascular closure devices offer the potential for enhanced control of access-site haemostasis and reduced complications in comparison with manual compression. However, although randomized clinical trials have shown reductions in time to haemostasis and ambulation, the data do not demonstrate consistent reductions in access-site complications or improvements in clinical outcomes. Another approach to increase the safety of percutaneous procedures is to use radial, rather than femoral, arterial access, a strategy that has polarized opinions among cardiologists. Clinical trial data show a clear reduction in access-site bleeding and complications with radial access, at the expense of a marginal increase in markers of procedural efficiency. However, randomized trials have not demonstrated improved clinical outcomes with radial access. The lack of impact on prognostically relevant bleeding events could explain this null finding, although the setting of primary percutaneous coronary intervention could be an exception. Ongoing, iterative improvement in catheter technologies, as well as in adjuvant antiplatelet and antithrombotic therapies, are likely to underlie the difficulty in demonstrating clear outcome benefits with different vascular access and closure strategies.

Key Points

  • The feasibility and success of transcatheter therapeutics are heavily dependent on the related issues of vascular access and arteriotomy closure

  • Manual compression remains the most frequently used modality for closure of vascular access after diagnostic catheterization or percutaneous intervention; however, a range of vascular closure devices (VCDs) are available

  • Randomized trial data show that the use of VCDs results in reduced time to haemostasis, ambulation, and hospital discharge

  • Rates of access-site bleeding and complications, as well as overall clinical outcomes, are not improved by use of VCDs

  • Worldwide, the femoral artery approach is the most-common vascular access modality for coronary angiography and intervention; however, uptake of radial access has increased rapidly in the past 10 years

  • Radial artery access reduces access-site bleeding and complications at the expense of a slight increase in metrics of procedural efficiency when compared with femoral access; overall clinical outcomes are not different

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vascular closure devices.
Figure 2: Risk of pseudoaneurysm after diagnostic angiography or intervention from meta-analysis of randomized trials comparing VCD and manual compression, overall and according to type of device.
Figure 3: Time to haemostasis after diagnostic angiography or intervention from meta-analysis of randomized trials comparing VCD and manual compression, overall and according to type of device.
Figure 4: Anatomy of the radial artery.
Figure 5: Anatomy of the common femoral artery.
Figure 6: Clinical outcomes from an updated meta-analysis of randomized trials of radial versus femoral access, including pre-RIVAL studies, the RIVAL trial and the combined dataset.

Similar content being viewed by others

References

  1. Monagan, D. & Williams, D. O. A Journey into the Heart: A Tale of Pioneering Doctors and Their Race to Transform Cardiovascular Medicine (Gotham Books, New York, 2007).

    Google Scholar 

  2. Holmes, D. R. Jr & Williams, D. O. Catheter-based treatment of coronary artery disease: past, present and future. Circ. Cardiovasc. Interv. 1, 60–73 (2008).

    Article  PubMed  Google Scholar 

  3. Rodés-Cabau, J. Transcatheter aortic valve implantation: current and future approaches. Nat. Rev. Cardiol. 9, 15–29 (2012).

    Article  Google Scholar 

  4. Waksman, R. et al. Predictors of groin complications after balloon and new-device coronary intervention. Am. J. Cardiol. 75, 886–889 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Dauerman, H. L., Rao, S. V., Resnic, F. S. & Applegate, R. J. Bleeding avoidance strategies. Consensus and controversy. J. Am. Coll. Cardiol. 58, 1–10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sones, F. M. Jr & Shirey, E. K. Cine coronary arteriography. Mod. Concepts Cardiovasc. Dis. 31, 735–738 (1962).

    PubMed  Google Scholar 

  7. Radner, S. Thoracal aortography by catheterization from the radial artery; preliminary report of a new technique. Acta Radiol. 29, 178–180 (1948).

    Article  CAS  PubMed  Google Scholar 

  8. Seldinger, S. I. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta Radiol. 39, 368–376 (1953).

    Article  CAS  PubMed  Google Scholar 

  9. Dotter, C. T. & Judkins, M. P. Transluminal treatment of arteriosclerotic obstruction. Description of a new technic and a preliminary report of its application. Circulation 30, 654–670 (1964).

    Article  CAS  PubMed  Google Scholar 

  10. Campeau, L. Percutaneous radial artery approach for coronary angiography. Cathet. Cardiovasc. Diagn. 16, 3–7 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Kiemeneij, F. & Laarman, G. J. Percutaneous transradial artery approach for coronary stent implantation. Cathet. Cardiovasc. Diagn. 30, 173–178 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Schwartz, B. G. et al. Review of vascular closure devices. J. Invasive Cardiol. 22, 599–607 (2010).

    PubMed  Google Scholar 

  13. Koreny, M., Riedmüller, E., Nikfardjam, M., Siostrzonek, P. & Müllner, M. Arterial puncture closing devices compared with standard manual compression after cardiac catheterization: systematic review and meta-analysis. JAMA 291, 350–357 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Nikolsky, E. et al. Vascular complications associated with arteriotomy closure devices in patients undergoing percutaneous coronary procedures: a meta-analysis. J. Am. Coll. Cardiol. 44, 1200–1209 (2004).

    PubMed  Google Scholar 

  15. Vaitkus, P. T. A meta-analysis of percutaneous vascular closure devices after diagnostic catheterization and percutaneous coronary intervention. J. Invasive Cardiol. 16, 243–246 (2004).

    PubMed  Google Scholar 

  16. Biancari, F. et al. Meta-analysis of randomized trials on the efficacy of vascular closure devices after diagnostic angiography and angioplasty. Am. Heart J. 159, 518–531 (2010).

    Article  PubMed  Google Scholar 

  17. Das, R., Ahmed, K., Athanasiou, T., Morgan, R. A. & Belli, A. M. Arterial closure devices versus manual compression for femoral haemostasis in interventional radiological procedures: a systematic review and meta-analysis. Cardiovasc. Intervent. Radiol. 34, 723–738 (2011).

    Article  PubMed  Google Scholar 

  18. Dauerman, H. L., Applegate, R. J. & Cohen, D. J. Vascular closure devices: the second decade. J. Am. Coll. Cardiol. 50, 1617–1626 (2007).

    Article  PubMed  Google Scholar 

  19. Subherwal, S. et al. Temporal trends in and factors associated with bleeding complications among patients undergoing percutaneous coronary intervention: a report from the National Cardiovascular Data CathPCI Registry. J. Am. Coll. Cardiol. 59, 1861–1869 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ho, P. M., Peterson, P. N. & Masoudi, F. A. Evaluating the evidence: is there a rigid hierarchy? Circulation 118, 1675–1684 (2008).

    Article  PubMed  Google Scholar 

  21. Dangas, G. et al. Vascular complications after percutaneous coronary interventions following hemostasis with manual compression versus arteriotomy closure devices. J. Am. Coll. Cardiol. 38, 638–641 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Tavris, D., Gross, T., Gallauresi, B. & Kessler, L. Arteriotomy closure devices—the FDA perspective. J. Am. Coll. Cardiol. 38, 642–644 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Tavris, D. R. et al. Risk of local adverse events following cardiac catheterization by hemostasis device use and gender. J. Invasive Cardiol. 16, 459–464 (2004).

    PubMed  Google Scholar 

  24. Tavris, D. R. et al. Risk of local adverse events following cardiac catheterization by hemostasis device use—phase II. J. Invasive Cardiol. 17, 644–650 (2005).

    PubMed  Google Scholar 

  25. Marso, S. P. et al. Association between use of bleeding avoidance strategies and risk of periprocedural bleeding among patients undergoing percutaneous coronary intervention. JAMA 303, 2156–2164 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Resnic, F. S. et al. Vascular closure devices and the risk of vascular complications after percutaneous coronary intervention in patients receiving glycoprotein IIb-IIIa inhibitors. Am. J. Cardiol. 88, 493–496 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Cura, F. A. et al. Safety of femoral closure devices after percutaneous coronary interventions in the era of glycoprotein IIb/IIIa platelet blockade. Am. J. Cardiol. 86, 780–782 A9 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Stone, G. W. et al. Bivalirudin in patients with acute coronary syndromes undergoing percutaneous coronary intervention: a subgroup analysis from the Acute Catheterization and Urgent Intervention Triage strategy (ACUITY) trial. Lancet 369, 907–919 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Sanborn, T. A. et al. Impact of femoral vascular closure devices and antithrombotic therapy on access site bleeding in acute coronary syndromes: The Acute Catheterization and Urgent Intervention Triage Strategy (ACUITY) trial. Circ. Cardiovasc. Interv. 3, 57–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Resnic, F. S., Arora, N., Matheny, M. & Reynolds, M. R. A cost-minimization analysis of the angio-seal vascular closure device following percutaneous coronary intervention. Am. J. Cardiol. 99, 766–770 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Heyde, G. S. et al. Randomized trial comparing same-day discharge with overnight hospital stay after percutaneous coronary intervention: results of the Elective PCI in Outpatient Study (EPOS). Circulation 115, 2299–2306 (2007).

    Article  PubMed  Google Scholar 

  32. Brasselet, C. et al. Comparison of operator radiation exposure with optimized radiation protection devices during coronary angiograms and ad hoc percutaneous coronary interventions by radial and femoral routes. Eur. Heart J. 29, 63–70 (2008).

    Article  PubMed  Google Scholar 

  33. Bertrand, O. F. et al. Transradial approach for coronary angiography and interventions: results of the first international transradial practice survey. JACC Cardiovasc. Interv. 3, 1022–1031 (2010).

    Article  PubMed  Google Scholar 

  34. Caputo, R. P. et al. Transradial arterial access for coronary and peripheral procedures: executive summary by the Transradial Committee of the SCAI. Catheter. Cardiovasc. Interv. 78, 823–839 (2011).

    Article  PubMed  Google Scholar 

  35. Rao, S. V. et al. Trends in the prevalence and outcomes of radial and femoral approaches to percutaneous coronary intervention: a report from the National Cardiovascular Data Registry. JACC Cardiovasc. Interv. 1, 379–386 (2008).

    Article  PubMed  Google Scholar 

  36. Morrison, D. A. Disruptive technology or evolutionary innovation? Catheter. Cardiovasc. Interv. 79, 595–596 (2012).

    Article  PubMed  Google Scholar 

  37. Di Mario, C. & Viceconte, N. Radial angioplasty: worthy RIVAL, not undisputed winner. Lancet 377, 1381–1383 (2011).

    Article  PubMed  Google Scholar 

  38. Kern, M. J. Cardiac catheterization on the road less traveled: navigating the radial versus femoral debate. JACC Cardiovasc. Interv. 2, 1055–1056 (2009).

    Article  PubMed  Google Scholar 

  39. Meier, P., Windecker, S. & Lansky, A. J. The Authors' reply. Heart 98, 1392–1393 (2012).

    Article  Google Scholar 

  40. Rao, S. V., Bernat, I. & Bertrand, O. F. Remaining challenges and opportunities for improvement in percutaneous transradial coronary procedures. Eur. Heart J. 33, 2521–2526 (2012).

    Article  PubMed  Google Scholar 

  41. Ndrepepa, G. et al. Periprocedural bleeding and 1-year outcome after percutaneous coronary interventions: appropriateness of including bleeding as a component of a quadruple end point. J. Am. Coll. Cardiol. 51, 690–697 (2008).

    Article  PubMed  Google Scholar 

  42. Lindsey, J. B. et al. Prognostic impact of periprocedural bleeding and myocardial infarction after percutaneous coronary intervention in unselected patients: results from the EVENT (evaluation of drug-eluting stents and ischemic events) registry. JACC Cardiovasc. Interv. 2, 1074–1082 (2009).

    Article  PubMed  Google Scholar 

  43. Mehran, R. et al. Impact of bleeding on mortality after percutaneous coronary intervention results from a patient-level pooled analysis of the REPLACE-2 (randomized evaluation of PCI linking angiomax to reduced clinical events), ACUITY (acute catheterization and urgent intervention triage strategy), and HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) trials. JACC Cardiovasc. Interv. 4, 654–664 (2011).

    Article  PubMed  Google Scholar 

  44. Slagboom, T., Kiemeneij, F., Laarman, G. J. & van der Wieken, R. Outpatient coronary angioplasty: feasible and safe. Catheter. Cardiovasc. Interv. 64, 421–427 (2005).

    Article  PubMed  Google Scholar 

  45. Rinfret, S. et al. Economic impact of same-day home discharge after uncomplicated transradial percutaneous coronary intervention and bolus-only abciximab regimen. JACC Cardiovasc. Interv. 3, 1011–1019 (2010).

    Article  PubMed  Google Scholar 

  46. Natsuaki, M. et al. Comparison of 3-year clinical outcomes after transradial versus transfemoral percutaneous coronary intervention. Cardiovasc. Interv. Ther. 27, 84–92 (2012).

    Article  PubMed  Google Scholar 

  47. Burzotta, F. et al. Vascular complications and access crossover in 10,676 transradial percutaneous coronary procedures. Am. Heart J. 163, 230–238 (2012).

    Article  PubMed  Google Scholar 

  48. Kiemeneij, F., Laarman, G. J., Odekerken, D., Slagboom, T. & van der Wieken, R. A randomized comparison of percutaneous transluminal coronary angioplasty by the radial, brachial and femoral approaches: the access study. J. Am. Coll. Cardiol. 29, 1269–1275 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Brueck, M. et al. A randomized comparison of transradial versus transfemoral approach for coronary angiography and angioplasty. JACC Cardiovasc. Interv. 2, 1047–1054 (2009).

    Article  PubMed  Google Scholar 

  50. Jolly, S. S. et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet 377, 1409–1420 (2011).

    Article  PubMed  Google Scholar 

  51. Agostoni, P. et al. Radial versus femoral approach for percutaneous coronary diagnostic and interventional procedures; Systematic overview and meta-analysis of randomized trials. J. Am. Coll. Cardiol. 44, 349–356 (2004).

    Article  PubMed  Google Scholar 

  52. Jolly, S. S., Amlani, S., Hamon, M., Yusuf, S. & Mehta, S. R. Radial versus femoral access for coronary angiography or intervention and the impact on major bleeding and ischemic events: a systematic review and meta-analysis of randomized trials. Am. Heart J. 157, 132–140 (2009).

    Article  PubMed  Google Scholar 

  53. Bertrand, O. F. et al. Comparison of transradial and femoral approaches for percutaneous coronary interventions: a systematic review and hierarchical Bayesian meta-analysis. Am. Heart J. 163, 632–648 (2012).

    Article  PubMed  Google Scholar 

  54. Mitchell, M. D. et al. Systematic review and cost-benefit analysis of radial artery access for coronary angiography and intervention. Circ. Cardiovasc. Qual. Outcomes 5, 454–462 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Spaulding, C. et al. Left radial approach for coronary angiography: results of a prospective study. Cathet. Cardiovasc. Diagn. 39, 365–370 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Louvard, Y., Lefevre, T. & Morice, M. C. Radial approach: what about the learning curve? Cathet. Cardiovasc. Diagn. 42, 467–468 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Goldberg, S. L., Renslo, R., Sinow, R. & French, W. J. Learning curve in the use of the radial artery as vascular access in the performance of percutaneous transluminal coronary angioplasty. Cathet. Cardiovasc. Diagn. 44, 147–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Ball, W. T. et al. Characterization of operator learning curve for transradial coronary interventions. Circ. Cardiovasc. Interv. 4, 336–341 (2011).

    Article  PubMed  Google Scholar 

  59. Sciahbasi, A. et al. Evaluation of the “learning curve” for left and right radial approach during percutaneous coronary procedures. Am. J. Cardiol. 108, 185–188 (2011).

    Article  PubMed  Google Scholar 

  60. Kawashima, O. et al. Effectiveness of right or left radial approach for coronary angiography. Catheter. Cardiovasc. Interv. 61, 333–337 (2004).

    Article  PubMed  Google Scholar 

  61. Fernandez-Portales, J. et al. Right versus left radial artery approach for coronary angiography. Differences observed and the learning curve [Article in Spanish]. Rev. Esp. Cardiol. 59, 1071–1074 (2006).

    Article  PubMed  Google Scholar 

  62. Sciahbasi, A. et al. Transradial approach (left vs right) and procedural times during percutaneous coronary procedures: TALENT study. Am. Heart J. 161, 172–179 (2011).

    Article  PubMed  Google Scholar 

  63. Santas, E. et al. The left radial approach in daily practice. A randomized study comparing femoral and right and left radial approaches. Rev. Esp. Cardiol. 62, 482–490 (2009).

    Article  PubMed  Google Scholar 

  64. Kanei, Y. et al. Randomized comparison of transradial coronary angiography via right or left radial artery approaches. Am. J. Cardiol. 107, 195–197 (2011).

    Article  PubMed  Google Scholar 

  65. Freixa, X. et al. Right versus left transradial approach for coronary catheterization in octogenarian patients. Catheter. Cardiovasc. Interv. 80, 267–272 (2012).

    Article  PubMed  Google Scholar 

  66. Biondi-Zoccai, G. et al. Right versus left radial artery access for coronary procedures: An international collaborative systematic review and meta-analysis including 5 randomized trials and 3210 patients. Int. J. Cardiol. http://dx.doi.org/10.1016/j.ijcard.2011.11.100.

  67. Dominici, M. et al. Left radial versus right radial approach for coronary artery catheterization: a prospective comparison. J. Interv. Cardiol. 25, 203–209 (2012).

    Article  PubMed  Google Scholar 

  68. Kuipers, G. et al. Radiation exposure during percutaneous coronary interventions and coronary angiograms performed by the radial compared with the femoral route. JACC Cardiovasc. Interv. 5, 752–757 (2012).

    Article  PubMed  Google Scholar 

  69. Wijns, W. et al. Guidelines on myocardial revascularization. Eur. Heart J. 31, 2501–2555 (2010).

    Article  PubMed  Google Scholar 

  70. Sciahbasi, A. et al. Arterial access-site-related outcomes of patients undergoing invasive coronary procedures for acute coronary syndromes (from the ComPaRison of Early Invasive and Conservative Treatment in Patients With Non-ST-ElevatiOn Acute Coronary Syndromes [PRESTO-ACS] Vascular Substudy). Am. J. Cardiol. 103, 796–800 (2009).

    Article  PubMed  Google Scholar 

  71. Généreux, P. et al. Radial access in patients with ST-segment elevation myocardial infarction undergoing primary angioplasty in acute myocardial infarction: the HORIZONS-AMI trial. EuroIntervention 7, 905–916 (2011).

    Article  PubMed  Google Scholar 

  72. Saito, S. et al. Comparative study on transradial approach vs. transfemoral approach in primary stent implantation for patients with acute myocardial infarction: results of the test for myocardial infarction by prospective unicenter randomization for access sites (TEMPURA) trial. Catheter. Cardiovasc. Interv. 59, 26–33 (2003).

    Article  PubMed  Google Scholar 

  73. Cantor, W. J. et al. Radial versus femoral access for emergent percutaneous coronary intervention with adjunct glycoprotein IIb/IIIa inhibition in acute myocardial infarction—the RADIAL-AMI pilot randomized trial. Am. Heart J. 150, 543–549 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Brasselet, C., Tassan, S., Nazeyrollas, P., Hamon, M. & Metz, D. Randomised comparison of femoral versus radial approach for percutaneous coronary intervention using abciximab in acute myocardial infarction: results of the FARMI trial. Heart 93, 1556–1561 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yan, Z. X. et al. Safety and feasibility of transradial approach for primary percutaneous coronary intervention in elderly patients with acute myocardial infarction. Chin. Med. J. (Engl.) 121, 782–786 (2008).

    Article  Google Scholar 

  76. Chodor, P. et al. RADIal versus femoral approach for percutaneous coronary interventions in patients with Acute Myocardial Infarction (RADIAMI): a prospective, randomized, single-center clinical trial. Cardiol. J. 16, 332–340 (2009).

    PubMed  Google Scholar 

  77. Hou, L., Wei, Y. D., Li, W. M. & Xu, Y. W. Comparative study on transradial versus transfemoral approach for primary percutaneous coronary intervention in Chinese patients with acute myocardial infarction. Saudi Med. J. 31, 158–162 (2010).

    PubMed  Google Scholar 

  78. Chodor, P. et al. Radial vs femoral approach with StarClose clip placement for primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction. RADIAMI II: a prospective, randomised, single centre trial. Kardiol. Pol. 69, 763–771 (2011).

    PubMed  Google Scholar 

  79. Vorobcsuk, A. et al. Transradial versus transfemoral percutaneous coronary intervention in acute myocardial infarction. Systematic overview and meta-analysis. Am. Heart J. 158, 814–821 (2009).

    Article  PubMed  Google Scholar 

  80. Mamas, M. A. et al. Influence of access site selection on PCI-related adverse events in patients with STEMI: meta-analysis of randomised controlled trials. Heart 98, 303–311 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Joyal, D., Bertrand, O. F., Rinfret, S., Shimony, A. & Eisenberg, M. J. Meta-analysis of ten trials on the effectiveness of the radial versus the femoral approach in primary percutaneous coronary intervention. Am. J. Cardiol. 109, 813–818 (2012).

    Article  PubMed  Google Scholar 

  82. Jang, J. S. et al. Transradial versus transfemoral approach for primary percutaneous coronary intervention in patients with acute myocardial infarction: a systematic review and meta-analysis. EuroIntervention 8, 501–510 (2012).

    Article  PubMed  Google Scholar 

  83. Romagnoli, E. et al. Radial Versus Femoral Randomized Investigation in ST-Segment Elevation Acute Coronary Syndrome: The RIFLE-STEACS (Radial Versus Femoral Randomized Investigation in ST-Elevation Acute Coronary Syndrome) Study. J. Am. Coll. Cardiol. http://dx.doi.org/10.1016/j.jacc.2012.06.017.

  84. Arzamendi, D. et al. Effect on bleeding, time to revascularization, and one-year clinical outcomes of the radial approach during primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. Am. J. Cardiol. 106, 148–154 (2010).

    Article  PubMed  Google Scholar 

  85. Pancholy, S., Patel, T., Sanghvi, K., Thomas, M. & Patel, T. Comparison of door-to-balloon times for primary PCI using transradial versus transfemoral approach. Catheter. Cardiovasc. Interv. 75, 991–995 (2010).

    PubMed  Google Scholar 

  86. Johnman, C. et al. Clinical outcomes following radial versus femoral artery access in primary or rescue percutaneous coronary intervention in Scotland: retrospective cohort study of 4534 patients. Heart 98, 552–557 (2012).

    Article  PubMed  Google Scholar 

  87. Dahm, J. B. et al. A randomized trial of 5 vs. 6 French transradial percutaneous coronary interventions. Catheter. Cardiovasc. Interv. 57, 172–176 (2002).

    Article  PubMed  Google Scholar 

  88. Ratib, K., Chong, A. Y., Routledge, H. & Nolan, J. Spasm and occlusion in contemporary radial practice. JACC Cardiovasc. Interv. 3, 885–886 (2010).

    Article  PubMed  Google Scholar 

  89. Uhlemann, M. et al. The Leipzig prospective vascular ultrasound registry in radial artery catheterization: impact of sheath size on vascular complications. JACC Cardiovasc. Interv. 5, 36–43 (2012).

    Article  PubMed  Google Scholar 

  90. Zankl, A. R. et al. Radial artery thrombosis following transradial coronary angiography: incidence and rationale for treatment of symptomatic patients with low-molecular-weight heparins. Clin. Res. Cardiol. 99, 841–847 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Barbeau, G. R., Arsenault, F., Dugas, L., Simard, S. & Lariviere, M. M. Evaluation of the ulnopalmar arterial arches with pulse oximetry and plethysmography: comparison with the Allen's test in 1010 patients. Am. Heart J. 147, 489–493 (2004).

    Article  PubMed  Google Scholar 

  92. Pancholy, S., Coppola, J., Patel, T. & Roke-Thomas, M. Prevention of radial artery occlusion-patent hemostasis evaluation trial (PROPHET study): a randomized comparison of traditional versus patency documented hemostasis after transradial catheterization. Catheter. Cardiovasc. Interv. 72, 335–340 (2008).

    Article  PubMed  Google Scholar 

  93. Pancholy, S. B. & Patel, T. M. Effect of duration of hemostatic compression on radial artery occlusion after transradial access. Catheter. Cardiovasc. Interv. 79, 78–81 (2012).

    Article  PubMed  Google Scholar 

  94. Vassilev, D., Smilkova, D. & Gil, R. Ulnar artery as access site for cardiac catheterization: anatomical considerations. J. Interv. Cardiol. 21, 56–60 (2008).

    Article  PubMed  Google Scholar 

  95. Deftereos, S. et al. Sheathless transulnar versus standard femoral arterial access for percutaneous coronary intervention on bifurcation lesions. Int. J. Cardiol. 149, 398–400 (2011).

    Article  PubMed  Google Scholar 

  96. Aptecar, E. et al. Transulnar versus transradial artery approach for coronary angioplasty: the PCVI-CUBA study. Catheter. Cardiovasc. Interv. 67, 711–720 (2006).

    Article  PubMed  Google Scholar 

  97. Aptecar, E. et al. Percutaneous transulnar artery approach for diagnostic and therapeutic coronary intervention. J. Invasive Cardiol. 17, 312–317 (2005).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to researching the data for this article, discussion of its contents and to writing, reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Adnan Kastrati.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, R., Cassese, S., Linhardt, M. et al. Vascular access and closure in coronary angiography and percutaneous intervention. Nat Rev Cardiol 10, 27–40 (2013). https://doi.org/10.1038/nrcardio.2012.160

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing