Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Changing venues for tumour suppression: balancing destruction and localization by monoubiquitylation

Abstract

Recent studies have shown that three major tumour-suppressor proteins undergo monoubiquitylation-mediated nuclear–cytoplasmic shuttling. Importantly, this mechanism has consequences for cancer and implies that proper localization is central to the function of tumour suppressors. This Progress article highlights recent efforts demonstrating that monoubiquitylation coupled to nuclear–cytoplasmic shuttling might be a novel regulatory mechanism that directly influences the function of tumour suppressors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed models of monubiquitylation-mediated shuttling of tumour-suppressor proteins.

Similar content being viewed by others

References

  1. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med. 10, 789–799 (2004).

    CAS  PubMed  Google Scholar 

  2. Hoeller, D., Hecker, C. M. & Dikic, I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nature Rev. Cancer 6, 776–788 (2006).

    Article  CAS  Google Scholar 

  3. Wang, X. et al. NEDD4–1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128, 129–139 (2007).

    Article  CAS  Google Scholar 

  4. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    CAS  PubMed  Google Scholar 

  5. Pickart, C. M. & Eddins, M. J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta. 1695, 55–72 (2004).

    Article  CAS  Google Scholar 

  6. Kirkin, V. & Dikic, I. Role of ubiquitin- and Ubl-binding proteins in cell signaling. Curr. Opin. Cell Biol. 19, 199–205 (2007).

    Article  CAS  Google Scholar 

  7. Brooks, C. L. & Gu, W. p53 ubiquitination: Mdm2 and beyond. Mol. Cell 21, 307–315 (2006).

    Article  CAS  Google Scholar 

  8. Lloyd, A. C. p53: only ARF the story. Nature Cell Biol. 2, E48–E50 (2000).

    Article  CAS  Google Scholar 

  9. Bode, A. M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nature Rev. Cancer 4, 793–805 (2004).

    CAS  Google Scholar 

  10. Li, M. et al. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972–1975 (2003).

    Article  CAS  Google Scholar 

  11. Chipuk, J. E. & Green, D. R. Dissecting p53-dependent apoptosis. Cell Death. Differ. 13, 994–1002 (2006).

    Article  CAS  Google Scholar 

  12. Marchenko, N. D., Wolff, S., Erster, S., Becker, K. & Moll, U. M. Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J. 26, 923–934 (2007).

    Article  CAS  Google Scholar 

  13. Becker, K., Marchenko, N. D., Maurice, M. & Moll, U. M. Hyperubiquitylation of wild-type p53 contributes to cytoplasmic sequestration in neuroblastoma. Cell Death. Differ. 23 March 2007 (Epub ahead of print).

  14. Hirano, Y. & Ronai, Z. A new function for p53 ubiquitination. Cell 127, 675–677 (2006).

    Article  CAS  Google Scholar 

  15. Iwakuma, T. & Lozano, G. MDM2, an introduction. Mol. Cancer Res. 1, 993–1000 (2003).

    CAS  PubMed  Google Scholar 

  16. Greer, E. L. & Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425 (2005).

    Article  CAS  Google Scholar 

  17. Lehmann, O. J., Sowden, J. C., Carlsson, P., Jordan, T. & Bhattacharya, S. S. Fox's in development and disease. Trends Genet. 19, 339–344 (2003).

    Article  CAS  Google Scholar 

  18. Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    Article  CAS  Google Scholar 

  19. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    Article  CAS  Google Scholar 

  20. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  Google Scholar 

  21. Takaishi, H. et al. Regulation of nuclear translocation of forkhead transcription factor AFX by protein kinase B. Proc. Natl Acad. Sci. USA 96, 11836–11841 (1999).

    Article  CAS  Google Scholar 

  22. Biggs, W. H. 3rd, Meisenhelder, J., Hunter, T., Cavenee, W. K. & Arden, K. C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl Acad. Sci. USA 96, 7421–7426 (1999).

    Article  CAS  Google Scholar 

  23. Huang, H. et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl Acad. Sci. USA 102, 1649–1654 (2005).

    Article  CAS  Google Scholar 

  24. Essers, M. A. et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 23, 4802–4812 (2004).

    Article  CAS  Google Scholar 

  25. Oh, S. W. et al. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc. Natl Acad. Sci. USA 102, 4494–4499 (2005).

    Article  CAS  Google Scholar 

  26. van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nature Cell Biol. 8, 1064–1073 (2006).

    Article  CAS  Google Scholar 

  27. Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol. 8, 1169–1178 (1998).

    Article  CAS  Google Scholar 

  28. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).

    Article  CAS  Google Scholar 

  29. Haas-Kogan, D. et al. Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr. Biol. 8, 1195–1198 (1998).

    Article  CAS  Google Scholar 

  30. Maehama, T. & Dixon, J. E. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 9, 125–128 (1999).

    Article  CAS  Google Scholar 

  31. Eng, C. PTEN: one gene, many syndromes. Hum. Mutat. 22, 183–198 (2003).

    Article  CAS  Google Scholar 

  32. Gil, A., Andres-Pons, A. & Pulido, R. Nuclear PTEN: a tale of many tails. Cell Death Differ. 14, 395–399 (2007).

    Article  CAS  Google Scholar 

  33. Lian, Z. & Di Cristofano, A. Class reunion: PTEN joins the nuclear crew. Oncogene 24, 7394–7400 (2005).

    Article  CAS  Google Scholar 

  34. Shen, W. H. et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128, 157–170 (2007).

    Article  CAS  Google Scholar 

  35. Georgescu, M. M., Kirsch, K. H., Akagi, T., Shishido, T. & Hanafusa, H. The tumor-suppressor activity of PTEN is regulated by its carboxyl-terminal region. Proc. Natl Acad. Sci. USA 96, 10182–10187 (1999).

    Article  CAS  Google Scholar 

  36. Torres, J. & Pulido, R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J. Biol. Chem. 276, 993–998 (2001).

    Article  CAS  Google Scholar 

  37. Vazquez, F., Ramaswamy, S., Nakamura, N. & Sellers, W. R. Phosphorylation of the PTEN tail regulates protein stability and function. Mol. Cell Biol. 20, 5010–5018 (2000).

    Article  CAS  Google Scholar 

  38. Trotman, L. C. et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128, 141–156 (2007).

    Article  CAS  Google Scholar 

  39. Lee, J. O. et al. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99, 323–334 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all the members of the Pandolfi lab who contributed to these ideas. We are grateful to J.G. Clohessy and J. Kotsopoulos for critically reviewing the manuscript. We apologize to those colleagues whose work could not be included owing to space limitations. The work of P.P.P. is supported by the US National Cancer Institute, L.S. is supported by a Long Term Fellowship from the Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Pandolfi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmena, L., Pandolfi, P. Changing venues for tumour suppression: balancing destruction and localization by monoubiquitylation. Nat Rev Cancer 7, 409–413 (2007). https://doi.org/10.1038/nrc2145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing