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ABSTRACT 

  

 Genomes maybe organized as networks where protein-protein association plays the 
role of network links. The resulting networks are far from being random and their topological 
properties are a consequence of the underlying mechanisms for genome evolution. 
Considering data on protein-protein association networks from STRING database, we present 
experimental evidence that degree distribution is not scale free, presenting an increased 
probability for high degree nodes. We also show that the degree distribution approaches a 
scale invariant state as the number of genes in the network increases, although real genomes  
still present finite size effects.  

 Based on the experimental evidence unveiled by these data analyses, we propose a 
simulation model for genome evolution, where genes in a network are either acquired de novo 
using a preferential attachment  rule, or duplicated, with a duplication probability that linearly 
grows with gene degree and decreases with its clustering coefficient. The results show that 
topological distributions are better described than in previous genome evolution models. This 
model correctly predicts that, in order to produce protein-protein association networks with 
number of links and number of nodes in the observed range, it is necessary 90% of gene 
duplication and 10% of de novo gene acquisition.  

 If this scenario is true, it implies a universal mechanism for genome evolution. 
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Introduction.  Genome evolution is determined first by the processes that modify DNA and 
then by those mechanisms that either neutrally keep or naturally select these mutations by 
their phenotypic effects. The connection between DNA variations and the consequent 
phenotypic alterations is far from being simple and is elusive to determine. However, it is 
reasonable to assume that, after evolutionary time spans, these DNA variation mechanisms 
have left their mark on the genome.  

 Phenotypic effects are consequence of the existing associations between proteins 
which rule cellular metabolism. As proteins are expressed from genes, protein-protein 
associations will express eventual changes in genotypes and are prone to natural selection. 
Consequently we may speculate that natural selection, by defining genome evolution 
mechanisms, has left its mark on organisms protein-protein association matrices. This is not a 
novel idea. Barabási and collaborators1,2 have described genomes of different organisms as 
networks where nodes are either genes or proteins, and links correspond to associations 
between the nodes.  They proposed an evolution dynamics for the genome considering that 
genes are sequentially added to a network following a preferential attachment rule: each 
newly incorporated gene interacts with a gene already on the network with a probability that 
is proportional to its degree, that is, to the number of other genes with which it already 
interacts. The resulting artificial network is scale free and described well the available 
experimental data at that date.  

 However, the properties of a gene already in the network are not the only drive for a 
novel gene attachment. There are different molecular mechanisms acting as novelty source in 
gene formation, such as exon shuffling, retroposition, mobile elements, horizontal gene 
transfer, gene duplication, etc., and the connections of a new gene certainly reflect its origin 
together with the nature of the genes it connects to3. Among the mechanisms involved in new 
genes creation, gene duplication is recognizably the most important and there is plenty of 
evidence that it plays an essential role on genome evolution4. One major feature of a 
duplicated gene consists of inheriting its parent connections and this property is determinant 
to the whole network design.   

 Vázquez and collaborators5,6 proposed a model for genome evolution where genes are 
incorporated by duplication followed by mutations which are translated as adding and/or 
deleting links on a protein-protein association matrix. In this model, genes are randomly 
chosen to duplicate and parameters are set to produce gene networks where the probability 
that a gene product is associated to  other proteins decays as a power law as  increases. A 
drawback for this approach, using randomly chosen genes, lays on the experimental fact that 
the probability to fix a given duplication episode greatly varies according to the properties of 
the duplicating gene7-9. 

 Since the contributions by Barabási and collaborators, the amount and quality of data 
regarding both genomes and protein-protein association have greatly increased. For example, 
STRING database increased from few organisms at 2001 to 1133 organisms in 201110-12. Also, 
databases regarding protein-protein association for some organisms have been largely 
enhanced. Here we analyze data considering 268 core organisms, which strongly suggest that 
highly connected genes stem from duplication mechanisms acting preferentially on genes that 
are highly connected, but not excessively clustered. This conclusions are made evident here by 
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presenting the quantities as functions of , where  is the maximum degree in the 

network.  We also propose an adequate ordering for genes to evince topological properties of 
the protein-protein association matrix.  

 Considering these experimentally based conclusions we propose a genome evolution 
dynamics where, besides a Barabási mechanism of acquiring genes de novo based on 
preferential attachment, we also consider gene duplication, where the probability that a gene 
duplicates grows with its degree and decreases depending on how clustered it is. The results of 
these simulations are capable of describing different aspects of the network topology, besides 
predicting the ratio of duplicated and de novo acquired genes.  

Building protein-protein association matrices. We considered all 268 core organisms in 
STRING database, version 8.310-12, with confidence scores 0.700, 0.800, and 0.900 using  
“experimental” and “database” (95% of these interactions) added with  “neighborhood”, 
“fusion”, “co-expression”, and “co-occurrence” evidence. This information renders possible to 
build a network, where each node corresponds to a protein with at least one known protein-
protein association, and links correspond to these associations. To each network node  we 
assign a degree , which is the number of links arriving at that node. For each organism and 
score we produce a network and calculate the probability  that a protein has  links, 
defined as 

 

where  is the number of nodes and  is the number of nodes with degree . To compare 
different organisms, with different genome sizes, we considered a rescaled probability of 
finding a protein with a given degree , as follows 

 

where  is the maximum degree presented by the proteins of an organism. 

 Figure 1a presents the average, taken in intervals of , of the network 

degree distribution,   versus , for three different confidence scores: 0.700, 0.800 

and 0.900. The inset presents the degree distributions of all 268 core organisms, with different 
colors for different scores. The blue line in Fig. 1a is a power law fit, 

, which describes   for only a limited interval of . At values of  

near 0.9, this degree distribution presents a local maximum, associated to the cloud of points 
with higher values of probability presented in the inset. The probability of proteins with degree 
near increases and indicates a genome evolution dynamics where high degree genes are 
probable to appear. As the main mechanism of genome evolution is gene duplication3,4, it is 
reasonable to assume that the local maximum in     for large  is due to high 

duplication probability for more connected genes. Figure 1b presents the same data in a linear 
plot, where the standard deviations for each average value of  are shown, to evince 

that deviations from the power law fit is significant. Each point is an average over 268 
organisms, justifying a Z test for significance. The difference between the power law fit and the 
average   for confidence score 0.800 is shown in the inset for Fig.1b, in units of 

standard deviations for , calculated in intervals of . The maximum in degree 
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distribution is significantly different from the power law.   

 Figure 1c plots as a function of   the average clustering coefficient , defined as 

the fraction of existing connections between the neighbors of a gene with  neighbors in 
relation to the  maximum number of such connections . The inset in Fig. 1c individually 
shows the corresponding data for all core organisms.  For all three scores this curve is initially 
constant, presenting local minimum and maximum for, roughly,  and , 

respectively, decreasing after that: the most connected genes are not the maximally clustered. 
Observe that, while the maximum in  occurs for , the maximum for the 

clustering coefficient occurs before that.  

 Figure 1d plots the average degree  of the neighbors of a gene as a function of  
. The inset individually shows the corresponding data for all core organisms.  For all scores 

this curve is initially increasing, presenting a local maximum at roughly  , decreasing 

after that. It means that the most connected genes are not connected to the highest  genes.  
Observe also that the maxima in both  and  occur for . 

 Summarizing, these plots indicate that i)   is not power law; ii)   

presents a local maximum for ; iii) the clustering coefficient is not uniform, 

presenting local minimum and maximum; and iv) the network is assortative up to , 

with  decreasing after that.  These observations suggest node modules of high average 
degree which are highly clustered. This behavior is evinced by the superposition of data from a 
large number of organisms, plotted against a normalized degree . For comparison, Fig. S1 

presents plots normalized by the total number of genes of each organism, where this behavior 
is not as clearly unveiled. 

 

Ordering algorithm. To investigate further the consequences of genome evolution dynamics 
we chose those organisms for which there is more information regarding protein-protein 
association. Figure 2a shows the number of links versus the number of genes for the 268 core 
organisms for 0.800 confidence score. Observe that data for very well studied organisms as 
Homo sapiens or Arabidopsis thaliana, present larger numbers of genes and links, that is, more 
information is available. In what follows we considered 6 organisms, marked with orange dots 
in Fig. 2a (Homo sapiens, Mus musculus, Arabidopsis thaliana, Drosophila melanogaster, 
Saccharomyces cerevisiae, and Escherichia coli). 

 Protein-protein association data may be organized on a matrix  where each axis 
represents the protein list in a given order. The matrix elements  are assigned with value 1 
(0) if there is (not) an association between the genes at positions  and   of the list. For 
illustrational purposes, these association matrices may be represented by plots where a black 
dot at position  indicates that  .  

 We obtain the sets of genes of each organism from STRING database and dispose them 
in randomly ordered lists. Each possible order for a gene list implies a different configuration 
for matrix , for which a cost function  may be defined as  
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where  is proportional to the distance on the matrix from the point  to 
the diagonal (when ), and  is a parameter, here taken . Minimization of this 
function, by changing the genes localization on the list, implies approximating mutually 
interacting genes, as discussed in Ref. 13. 

 The ordering algorithm starts from a randomly ordered matrix configuration and 
proceeds by randomly choosing a pair of genes whose positions are tentatively swapped. The 
cost function for this changed configuration is calculated and, in case the cost decreases, the 
change is accepted. If the cost function increases by , the change is accepted with 
probability , where  is a parameter. This procedure is intended to avoid metastable 
states in the optimization of Eq.(3). Finally, when , the change is accepted with 50% 
probability. The algorithm proceeds by randomly choosing another pair of genes and the 
procedure is repeated until the value of the cost function is stabilized.   

 Randomly ordered lists yield association matrix configurations with black dots spread 
over the whole plot (see Figs. S2-S7 of Supplementary Materials). Ordering the gene list by 
minimizing the cost function evinces topological properties of protein-protein association 
networks. Figure 3a-f presents the ordered matrices for the six organisms listed above. 
Observe that points concentrate near the diagonal, implying that there may be an association 
( ) between the products of genes localized at not far apart positions  and . Not all 
networks may be put in formats like those shown by Figs. 3a-f. See Fig. 3-g which represents a 
network built using Barabási-Albert algorithm, or an Erdös-Rényi network, presented on Fig. S8 
of Supplementary Materials.  In fact, this format reveals that genomes (Figs.3a-f) do not 
present one central hub linked to the whole network (which could indicate scale free 
networks) but, contrarily, present many hubs with neighborhoods that do not span the entire 
system.  

  Figures 1 and 3 evince different aspects of real genomes. First, degree 
distribution is not a power law. Second, there is an accumulation of high degree nodes, which 
may be explained by an enhanced duplication probability for highly connected gene products. 
Finally, hub genes are not central to the whole network, which presents hierarchical clusters.  

 Another experimental aspect is relevant for genome evolution. Duplication events can 
be assessed by analyzing gene families, i.e., genes sharing the same ancestral gene. Some gene 
families have mainly orthologs, while others are composed by a great number of paralogs, 
indicating many duplication episodes7,14. The reason why some genes are prone to duplicate 
while others avoid duplication is controversial. However, duplication is clearly not randomly 
fixed and functional characteristics of the parent gene certainly influence new born genes 
fates. It has been discussed that genes presenting substrate promiscuity are prone to fix 
duplication while other genes avoid duplication because it probably leads to deleterious 
effects15. 

 Huang and collaborators16 demonstrated that highly connected proteins with low 
clustering coefficient (intermodular hubs) possess a higher proportion of duplicated genes as 
compared with proteins that are highly connected and highly clustered (intramodular hubs). 
According to those authors, intramodular hubs represent the network most stable and 
conservative part, while intermodular hubs represent the evolutionary dynamic network 
regions with a high duplication rate. 

Genome evolution model. These experimentally determined characteristics of genomes may 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
65

3.
1 

: P
os

te
d 

28
 N

ov
 2

01
1



-6 

be explained by an evolution dynamics with two different gene acquisition mechanisms:  de 
novo formation and duplication. The first mechanism follows Barabási preferential attachment 
rule, which simulates an enhanced attachment probability shown by genes with more active 
domains2. The second mechanism describes the experimental facts discussed above: genes are 
chosen with higher probability when they are more connected, but less clustered. Clustering 
coefficient  for the  gene is defined as17,18 

 

which gives the ratio of existing links between the neighbors of the  gene to the maximum 
possible number of such links. The duplication probability for the  gene is defined as  

                                   

where the denominator guarantees a normalized probability. This assumption reproduces the 
experimental facts that i) degree distributions have a local maximum for   near 1 (Fig.1)  

and ii) more clustered genes are less prone to duplicate7,16,19. 

 Simulations start with 5 nodes, each linked to two others, forming a ring. To acquire a 
new gene we first choose either de novo mechanism, with probability , or duplication, 
with probability . If the de novo mechanism is chosen, each existing node  is linked to the 
new one with probability , and the procedure is repeated until the new node presents at 

least one link. In case of duplication, the node to be duplicated is chosen using the probability 
defined in Eq.(5). Duplication implies creating a new node linked to its parent and with the 
same neighbors. 

 After duplication, mutations are implemented by deleting links between either the 
parent or the child with a common neighbor with probability . In fact, a hallmark of gene 
duplication is the subsequent speciation of at least one gene copy 20. 

 This simulation model has two parameters, duplication probability  and mutation 
probability . For the numbers of links and genes of simulated networks to fall in the same 
intervals as more extensively investigated organisms (Fig. 2.a),  must be of the order of 0.90, 
which is experimentally verified: Zhou et al.4 have studied Drosophila melanogaster genome 
and compared it to other organisms in D. melanogaster subgroup.  They have found that 
duplication is responsible for 80% of new genes, and 10% is generated by retroposition, here 
taken as an additional form of gene duplication. We are left with one single parameter , set to 
0.05 to match the observed relation between number of links and nodes presented by protein-
protein association matrices of real organisms (Fig.2a). 

 We also simulated two other well described models for genome evolution: Barabási 
and Albert1 model, based on a preferential attachment rule, and Vazquez et al.5,6 model, where 
genomes are built by duplicating randomly chosen genes. For both models, parameters are set 
to ensure that the number of links and nodes are roughly the same as in the protein-protein 
association networks obtained from STRING database for confidence score 0.800. In Barabási-
Albert model, each new node is connected with 15 neighbors, and in the duplication-
divergence model each node is linked with its parent, and has 0.4 of mutation probability.  For 
brevity, we considered the most cited models in the literature although other interesting 
models also address genome growth21-25. Anyway, as far as we know, no previous model 
simultaneously describes all properties shown by protein-protein association networks of 268 
core organisms as presented in Figs. 1-3.  
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 Figs. 2a, 2c, and 2e present, as a function of , the plots of number of links , 
average degree , and maximum degree, , for experimental results (dots) and simulated 
models (solid lines). As discussed, the chosen model parameters ensure that the simulated 
number of links crosses the region with best investigated organisms. The experimental points 
indicate that the number of links is proportional to the number of nodes, that is, . This 
behavior is clearly shown by both Barabási-Albert and our model, and is further evinced by Fig. 
2c, that shows a constant average degree for experimental dots and these two models. Finally, 
Fig. 2e shows that, for the simulations,  increases with, roughly, . The experimental 
results are not in contradiction, although they are not conclusive. Anyway, this behavior 
explains why using  instead of  as the normalization constant in Eq. 2 yield different 
results.  

 Figs. 2b, 2d, and 2f present  versus  for the three simulated models, 

measured at different instants. Observe that clearly Barabási-Albert and our model converge 
to a scaling invariant distributions that superpose as , while for the Vasquez (D-D) 
model this convergence is either not true or too slow. This is a relevant point: although real 
genomes are finite, we may speculate that when large enough they present a scale invariant 
degree distribution. If this is true, the data collapse predicted by scaling invariance, together 
with a significant fit of the collapsed degree distribution of all core organisms, is as a strong 
evidence of a common mechanism universally ruling genome growth. 

          On the other hand, experimental degree distributions may present finite size effects. This 
is clear in Fig. S9, where we show  versus  for the experimental data (score 0.800) 

averaged over genomes whose protein-protein association networks present  in the ranges 
, , …, . The degree distributions seem to converge to a 

scale invariant state, but for the smaller networks the finite size effects are visible. Both 
experimental data and D-A model results show that smaller networks present a higher local 
maximum in  for large . To properly compare the simulations results with 

experimental networks with variable sizes, we considered a weighted average of the degree 
distribution, as follows.  

 For each model, we produced 10 samples in each size range listed above, and obtained 
the distributions of degree, clustering coefficient, and average degree of the neighbors as 
functions of . To compare with the set of all 268 core organisms, presenting, respectively,  

32, 110, 74, 39, 10, 1 and 2 organisms in each size range, we produced weighted averages over 
the size ranges for the  topological distributions, using the weights 32/268, 110/268, 74/268, 
39/268, 10/268, 1/268 and 2/268. These results are shown in Fig. 4.  Other parameters values 
in each model yield different results, shown in Figs. S10-S13 in Supplementary Materials: The 
description of topological quantities are worse in these cases. Similar averages for the six, best 
investigated organisms are shown in Fig. S14 of Supplementary Materials. 

 Figures 3g-i present ordered association matrices for simulated networks.  Barabási-
Albert (B-A) model (Fig. 3g) clearly shows only one module, with a central hub connected to all 
network. Duplication-Divergence (D-D) model, on the other hand, shows a slimmer structure 
around the diagonal, and Duplication-Acquisition (D-A) model presents a central hub not 
connected to the whole network. Figure S15 of Supplementary Materials presents the same 
panels, zooming at the central regions: the hierarchical structure of clusters, evinced by small 
solid squares, is clearly present in organisms and Duplication-Acquisition model. Figure S16 of 
Supplementary Materials present the orderings obtained with , which stress further the 
clustered structures.  
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Duplication-Acquisition model reproduces the topology of protein-protein association 
networks. For each network, we calculated the weighted average for probability  , the 

clustering coefficient , and the relative degree of the neighbors of a node 

with degree , defined as  

,                                             (6) 

where  stands for a sum over the nodes  that are neighbors to node . 

 The black dots in Figs. 4 refer to protein-protein association networks of the 268 core 
organisms, which present large clustering coefficients for all degrees, decreasing as   

approaches 1:  very high degree nodes are less clustered than less connected nodes. In 
organisms, the average number of connections of the neighbors, , first increases with the 
node degree and then decreases, reinforcing the fact of very high degree nodes not presenting 
the largest clustering coefficient.  Figure 4 presents three columns, one for each model, where 
we show the  i)  the experimental data as black points, weighted averages for ii) experimental 
points as green lines and for iii) simulation as red lines. The first column shows that B-A model 
produces a degree distribution  that follows a power law, a clustering coefficient 

that is roughly constant at a value that is much less than those shown by experimental data. 
Furthermore,  does not depend on . The deviation from the experimental dots 

reflects that Barabási-Albert model yield scale free networks with a global central hub.   

 The second column presents the results for the Duplication-Divergence (D-D) model. 
Here, this distribution clearly does not follow a power law, due to the chosen parameters (link 
deleting probability of 0.4), that fixed the ratio of number of links to number of nodes to the 
desired values (see Fig. 2a). The average clustering coefficient decreases too abruptly, as 
compared to experimental data: as degree increases, the clustering decreases as 

. However, the average degree of the neighbors presents a mild increase, 

meaning that genes connect to groups of genes with slightly larger degrees. For comparison 
see Figs. S17-S18 in Supplementary Materials.  

 The third column in Fig. 4 refers to the results of our model. In Fig. 4c,  

describes very well the experimental data.  For high values of , degree distribution 

reproduces the local maximum as shown by real organisms, although for smaller degrees. The 
clustering coefficient, shown in Fig. 4f, describes the major part of the interval, presenting a 
more intense decrease as . The varying character of assortativeness as  increases is 

also evident in Fig. 4i:   first increases to a maximum up to . 

 Comparing the three columns we conclude that D-A model better catches the 
topological properties of protein-protein association networks, according to the currently 
available experimental data, although the description is not perfect. 

 

Conclusions. In this paper we have presented experimental evidence that degree distribution 
is not scale free, presenting an increased probability for high degree nodes, and that there are 
a few hub nodes in these networks, probably organized in a hierarchical way. Furthermore, 
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when scaled by the maximum degree in each network, , the degree distribution seems to 
approach a scale invariant state as the number of genes in the network increases. However, 
real genomes still present finite size effects. If this scenario is true, it indicates a universal 
mechanism for genome evolution. 

 We propose a simulation model for genome evolution, Duplication-Acquisition model, 
where genes in a network are either acquired de novo using a preferential attachment rule, or 
duplicated, with a duplication probability that linearly grows with gene degree and decreases 
with its clustering coefficient. With this simple rule, topological distributions are well 
described. This model correctly predicts that, to produce protein-protein association networks 
with number of links and number of nodes in the observed range, it is necessary 90% of gene 
duplication and 10% of de novo gene acquisition. 

 To compare the networks we ordered gene lists for each organism and model to 
produce protein-protein association matrices yielding images of the network association 
structure. These images suggest that there is a system scale that is less than its size (see Fig.3), 
with, possibly, a hierarchical modular organization, as predicted by the Duplication-Acquisition  
model (see Fig. S16). 

 The simulation model is not perfect. Most probably phenotypic effects caused by gene 
acquisition, duplication, or mutation cannot be fully grasped by network gene properties only 
and, consequently, this model is an over-simplification. However it does point towards a 
positive correlation between duplication probability and degree, while indicating a negative 
correlation between duplication probability and clustering coefficient. 
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Fig. 1 – Topological quantities for all 268 core organisms from STRING database for three 

different confidence scores: 0.700, 0.800 and 0.900 (black, red and green lines in all 
graphs, respectively). All measurements are taken as functions of node degree,  rescaled 
by the maximum degree of the corresponding network. All averages were taken over 
intervals of  

max
. (a) Average degree distribution compared with a tentative  

power law fit (blue line). (b) Average degree distribution in linear scale, showing the 
increase in the degree distribution for higher degree. The inset presents the distance 
between the power law fit and the average of networks with score 0.800  measured in 
number of standard deviations. (c) Clustering coefficient and (d) mean nearest neighbor 
degree averaged over all core organisms. The insets in panels (a), (c)  and (d) show  
individual results for all core organisms for each score.  

 
Fig 2. -  Evolution of simulated Barabási-Albert, duplication-divergence and duplication-

acquisiton networks (red, blue and green lines, respectively). The black dots represent 
all core organisms from STRING database, where six well studied organisms are 
highlighted in orange. (a) Number of links, (c) mean degree and (e) maximum degree 
are shown as  functions of the total number of nodes in the network. The degree 
distribution was calculated in five snapshots of the evolution of (b) Barabási-Albert, (d) 
duplication-divergence, and (f) duplication-acquisition models,  in intervals of 2000 
nodes. 

 
Fig 3. - Ordered association matrices. This figure presents the association matrices for  Homo 

sapiens, Mus musculus, Arabidopsis thaliana, Drosophila melanogaster, Saccharomyces 
cerevisiae, Escherichia coli, Barbási-Albert model, duplication-divergence model and 
duplication-acquisition model after running the ordering algorithm. The black dots 
represent  interactions between two nodes. 

 
 
Fig 4. - Comparison of topological measures for simulated networks. The black dots represent 

the superposed networks for all core organisms from string database with confidence 
score 0.800, the green lines are averages taken in intervals of 

max
, and the 

red lines are weighted averages of simulated networks. The upper, central, and lower 
rows show, respectively, degree distribution, clustering coefficient, and nearest 
neighbor mean degree. Each column refers to a simulated model: Barabási-Albert on 
the left, duplication-divergence on the center and duplication-acquisition on the right.   
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