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The  solubility  of  polyaromatic  hydrocarbons  (PAHs)  and  their 
derivatives  in  organic  solvents  is  of  substantial  interest  for  the 
upstream and downstream petroleum sectors  [1-4]. Knowledge of 
this physico-chemical property helps guide the development and 
optimization  of  existing  and proposed extraction  and processing 
operations. In addition to extensive experimental work determining 
the solubilities of various PAHs (see, e.g., ref. [5-21]), a number of 
studies  have  developed  quantitative  structure-property 
relationships  (QSPRs)  and  employed  associated  software 
programs  (see,  e.g.,  ref.  [22-28])  for  predicting  the  solubility  of 
these compounds in a wide range of solvent systems.

To  date,  despite  its  broad  applications  towards  predicting  the 
partitioning behavior and reactivity of various organic compounds, 
the  SPARC  software  program  [29-36] has  not  been  previously 
benchmarked  for  its  capacity  to  estimate  the  solubility  of 
representative  PAHs  in  organic  solvents.  Consequently,  in  the 
current  work  we  investigate  the  ability  of  SPARC to  predict  the 
solubilities of naphthalene (1) and anthracene (2) (Figure 1) in a 
range of organic solvents at various temperatures.

Fig. 1. Structures of naphthalene (1) and anthracene (2).

Mole  fraction  solubilities  (log10 ΧA
sat)  of  1 and  2 were  estimated 

using  SPARC  (August  2011  release  w4.6.1646-s4.6.1646; 
http://ibmlc2.chem.uga.edu/sparc/)  with  the  default  settings  and 
solvent profiles.  We have previously examined the ability  of  this 
program to estimate the pKa values, hydrolysis rate constants, and 
partitioning behavior of several classes of organic compounds [37-
46].

We began our studies using the ΧA
sat of naphthalene obtained in 

chloroform,  t-butanol,  cyclohexanol,  2-propanol,  1-propanol,  and 
ethanol  at  40°C  under  atmospheric  pressure  (Table  1).  Poor 
agreement between the experimental and SPARC predicted  ΧA

sat 

was found for  t-butanol,  cyclohexanol,  and 2-propanol  (errors of 
+0.78, +0.41, and +0.45 log10 units, respectively), with reasonable 
ΧA

sat agreement for chloroform, 1-propanol, and ethanol (errors of 
+0.11, -0.15, and -0.02 log10 units, respectively).

Table 1. Comparison between experimental and SPARC estimated 
mole  fraction  solubilities  (log10 ΧA

sat)  of  naphthalene  in  selected 
organic solvents at 40°C under atmospheric pressure.

expt. SPARC
chloroform -0.33 [47] -0.22
t-butanol -1.00 [47] -0.22
cyclohexanol -0.63 [47] -0.22
2-propanol -1.12 [47] -0.67
1-propanol -1.03 [47] -1.28
ethanol -1.14 [47] -1.16

However,  a  recurring  problem  with  SPARC  appears  to  be  its 
inconsistency in reproducing results between different sessions of 
the online program. For example, during one session, ΧA

sat of -0.16, 

-0.16, -0.16, -0.16, -0.94, and -0.84 were obtained for chloroform, t-
butanol,  cyclohexanol,  2-propanol,  1-propanol,  and  ethanol  at 
40°C,  respectively.  Later  the  same  day,  different  corresponding 
ΧA

sat values  of  -0.22,  -0.22,  -0.22,  -0.67,  -1.28,  and  -1.16  were 
obtained. We have previously reported on the temporal instability 
of the SPARC program for predicting partitioning properties  [40]. 
Several concerns arise from this software behavior. The first issue 
is  that  solvents  with  such  widely  differing  physico-chemical 
properties as chloroform, t-butanol,  and cyclohexanol  should not 
have equivalent predicted ΧA

sat to two significant figures for PAHs. 
Additionally, temporal inconsistencies in the prediction performance 
of  any  software  program renders it  of  little  utility,  and suggests 
substantial  code  errors  as  the  source  of  the  anomalous  and 
unpredictable responses.

We then  considered  the  solubility  behavior  of  naphthalene  in  a 
suite of additional organic solvents of varying polarity and for which 
broad temperature range specific ΧA

sat values were available (Table 
2). With the single exception of methanol, SPARC overestimates 
the  solubility  of  naphthalene  in  all  solvents  (i.e.,  log10 

ΧA,SPARC
sat>log10 ΧA,expt

sat). Similarly, with the exception of methanol, 
the  SPARC  prediction  performance  improves  with  increasing 
temperature, as the solute becomes more soluble in the solvent. 
While  the  errors  in  predicted versus experimental  log10 ΧA

sat are 
typically  on  the  order  of  several  tenths  of  a  log10 unit  at  low 
temperatures, at higher temperatures the error is reduced (with the 
exception of methanol) to <0.1 log10 units.

Table 2. Comparison between experimental and SPARC estimated 
mole  fraction  solubilities  (log10 ΧA

sat)  of  naphthalene  in  selected 
organic  solvents  at  various  temperatures  under  atmospheric 
pressure.

benzene chlorobenzene
T (°C) expt. SPARC T (°C) expt. SPARC

6.1 -0.76 [48] -0.31 4.2 -0.73 [48] -0.32
15.0 -0.65 [48] -0.27 8.8 -0.68 [48] -0.30
21.7 -0.57 [48] -0.24 22.1 -0.53 [48] -0.24
29.1 -0.49 [48] -0.20 29.4 -0.46 [48] -0.20
39.6 -0.38 [48] -0.16 40.0 -0.35 [47] -0.16
40.0 -0.37 [47] -0.16 42.8 -0.33 [48] -0.14
48.8 -0.28 [48] -0.12 49.0 -0.27 [48] -0.12
61.2 -0.16 [48] -0.071 62.6 -0.15 [48] -0.066

methanol acetone
T (°C) expt. SPARC T (°C) expt. SPARC

0.8 -1.97 [48] -2.33 6.3 -0.90 [48] -0.69
13.5 -1.79 [48] -2.08 14.3 -0.78 [48] -0.28
26.3 -1.59 [48] -1.85 24.2 -0.64 [48] -0.23
33.6 -1.48 [48] -1.72 32.6 -0.52 [48] -0.19
40.0 -1.36 [47] -1.61 39.3 -0.44 [48] -0.16
43.9 -1.29 [48] -1.55 40.0 -0.42 [47] -0.16
56.7 -0.99 [48] -1.34 47.2 -0.33 [48] -0.13
68.4 -0.41 [48] -1.14 58.5 -0.21 [48] -0.081
74.3 -0.086 [48] -1.03 69.5 -0.094 [48] -0.039

n-butanol nitrobenzene
T (°C) expt. SPARC T (°C) expt. SPARC
11.7 -1.31 [48] -1.23 2.9 -0.79 [48] -0.59
22.0 -1.24 [48] -1.04 13.8 -0.66 [48] -0.28
31.6 -1.09 [48] -0.80 24.0 -0.54 [48] -0.23
40.0 -0.94 [47] -0.16 40.0 -0.36 [47] -0.16
46.5 -0.80 [48] -0.13 45.3 -0.31 [48] -0.14
56.9 -0.56 [48] -0.088 60.2 -0.17 [48] -0.075
68.1 -0.22 [48] -0.045 65.3 -0.12 [48] -0.055
76.0 -0.04 [48] -0.015 71.8 -0.070 [48] -0.031
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Table 2 cont'd.
aniline n-hexane

T (°C) expt. SPARC T (°C) expt. SPARC
0.6 -1.16 [48] -0.34 8.7 -1.21 [48] -0.45
10.6 -0.99 [48] -0.29 14.8 -1.10 [48] -0.41
22.0 -0.81 [48] -0.24 19.5 -1.02 [48] -0.38
29.9 -0.68 [48] -0.20 27.7 -0.88 [48] -0.33
37.4 -0.56 [48] -0.17 36.1 -0.73 [48] -0.28
40.0 -0.51 [47] -0.16 40.0 -0.65 [47] -0.25
50.8 -0.35 [48] -0.11 45.8 -0.54 [48] -0.13
60.8 -0.20 [48] -0.072 57.9 -0.30 [48] -0.084
65.4 -0.15 [48] -0.055 64.6 -0.18 [48] -0.058
74.4 -0.055 [48] -0.021 72.5 -0.072 [48] -0.028

carbon tetrachloride toluene
T (°C) expt. SPARC T (°C) expt. SPARC

0.4 -0.92 [48] -0.36 8.2 -0.74 [48] -0.31
6.0 -0.84 [48] -0.32 17.3 -0.63 [48] -0.26
13.0 -0.75 [48] -0.28 34.8 -0.43 [48] -0.18
19.5 -0.66 [48] -0.25 40.0 -0.37 [47] -0.16
28.2 -0.55 [48] -0.21 43.9 -0.33 [48] -0.14
39.5 -0.41 [48] -0.16 52.1 -0.25 [48] -0.11
40.0 -0.40 [47] -0.16 67.4 -0.13 [48] -0.047
46.9 -0.32 [48] -0.13
58.3 -0.20 [48] -0.082
64.8 -0.14 [48] -0.057
72.4 -0.067 [48] -0.028

Although  the  SPARC  prediction  errors  for  the  solubilities  of 
naphthalene  at  low  temperatures  in  these  organic  solvents  are 
larger than desired, they were sufficiently modest to  warrant  an 
examination into the solubilities of the next highest member of the 
[n]acene PAH series – anthracene – in various organic solvents 
(Tables  3  and  4).  For  this  larger  PAH,  we  find  generally  poor 
SPARC  prediction  performance  at  both  low  and  moderately 
elevated temperatures, with  log10 ΧA

sat errors (always positive with 
the  exceptions  of  ethylene  glycol  and  2,2,2-trifluoroethanol) 
typically on the order of one  log10 unit  or higher. In  each of the 
solvents for which multiple temperature comparisons were made 
(toluene,  2-propanol,  and  n-heptane),  the  prediction  errors  all 
decline with increasing temperature, but not to the extent required 
to obtain reliable log10 ΧA

sat estimates.

Table 3. Comparison between experimental and SPARC estimated 
mole  fraction  solubilities  (log10 ΧA

sat)  of  anthracene  in  selected 
organic solvents at 25°C under atmospheric pressure.
solvent expt. SPARC
n-nonane -2.68 [49] -1.02
n-decane -2.63 [49] -1.02
chloroform -1.96 [49] -1.31
dichloromethane -2.03 [49] -1.17
chlorobenzene -2.00 [49] -0.80
methanol -3.61 [49] -3.21
ethanol -3.34 [49] -2.37
1-hexanol -2.83 [49] -1.70
cyclopentanol -2.88 [49] -2.07
ethylene glycol -4.15 [49] -4.86
2,2,2-trifluoroethanol -4.06 [49] -5.27
acetonitrile -3.08 [49] -2.26
benzonitrile -2.07 [49] -0.82
N,N-dimethylformamide -2.11 [49] -1.40
N,N-dimethylacetamide -1.90 [49] -1.16

Table 4. Comparison between experimental and SPARC estimated 
mole  fraction  solubilities  (log10 ΧA

sat)  of  anthracene  in  selected 
organic  solvents  at  various  temperatures  under  atmospheric 
pressure.
solvent Temperature

(°C)
expt.

log10 ΧA
sat

SPARC
log10 ΧA

sat

toluene 20.0 -2.21 [50] -1.07
25.0 -2.14 [50] -1.05
30.0 -2.07 [50] -1.00
35.0 -1.98 [50] -0.96
40.0 -1.95 [50] -0.93
45.0 -1.85 [50] -0.89
50.0 -1.80 [50] -0.85

2-propanol 20.0 -3.72 [50] -1.90
25.0 -3.43 [50], -3.39 [51],

-3.47 [52]
-1.85

30.0 -3.37 [50], -3.36 [52] -1.75
35.0 -3.24 [50], -3.21 [52] -1.68
40.0 -3.13 [50], -3.09 [52] -1.61
45.0 -3.13a [50] -1.53
50.0 -2.96 [50] -1.47

n-heptane 20.0 -2.92 [50] -1.09
25.0 -2.87 [50], -2.80 [53] -1.05
30.0 -2.73 [50] -1.00
35.0 -2.75 [50] -0.96
40.0 -2.63 [50] -0.92
45.0 -2.49 [50] -0.88
50.0 -2.46 [50] -0.84

a reported experimental  ΧA
sat value in ref.  [50] is suspect as these 

authors  report  no  change  in  ΧA
sat between  40°C  and  45°C,  in 

contrast to expectations and the general trend between 20°C and 
50°C.

Overall, the results suggest that the SPARC software program is 
currently  not  suitable  for  accurately  predicting  the  solubilities  of 
representative PAHs relevant for the petroleum sector in various 
organic solvents.

References and Notes

a Chemologica Research, PO Box 74, 318 Rose Street, Mortlach, 
Saskatchewan, Canada, S0H 3E0
b Department  of  Environmental  Engineering,  Saskatchewan 
Institute of Applied Science and Technology, Palliser Campus, PO 
Box  1420,  600  6th  Avenue  NW,  Moose  Jaw,  Saskatchewan, 
Canada, S6H 4R4

* Corresponding author: rayne.sierra@gmail.com

[1]  Fahim  MA,  Al-Sahhaf  TA  &  Elkilani  A.  Fundamentals  of 
petroleum refining. Elsevier, New York, 2010.
[2]  Wauquier  JP  &  Favennec  JP.  Petroleum  refining:  Refinery  
operation and management. Editions TECHNIP, Paris, 2001.
[3] Gary JH & Handwerk GE.  Petroleum refining: Technology and 
economics. CRC Press, Boca Raton, FL, 2001.
[4] Le Page JF, Chatila SG & Davidson M.  Resid and heavy oil  
processing. Editions TECHNIP, Paris, 1992.
[5]  Judy  CL,  Pontikos  NM &  Acree  WE.  Solubility  of  pyrene  in 
binary  solvent  mixtures  containing  cyclohexane.  J.  Chem.  Eng.  
Data (1987) 32: pp. 60-62.
[6]  Hernandez CE,  Coym KS,  Roy LE,  Powell  JR & Acree WE. 
Solubility of pyrene in binary (alkane + 2-butanol) solvent mixtures. 
J. Chem. Thermodyn. (1998) 30: pp. 37-42.
[7] Zvaigzne AI & Acree WE. Solubility of pyrene in binary alkane + 
1-propanol  and alkane +  2-propanol  solvent  mixtures.  J.  Chem. 
Eng. Data (1993) 38: pp. 393-395.
[8] Wallach JR, Tucker SA, Oswalt BM, Murral DJ & Acree WE. 

2

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.6

64
8.

1 
: P

os
te

d 
26

 N
ov

 2
01

1



Solubility  of  pyrene in  binary  solvent  mixtures containing  dibutyl 
ether. J. Chem. Eng. Data (1989) 34: pp. 70-73.
[9] McHale MER, Coym KS, Fletcher KA & Acree WE. Solubility of 
pyrene in binary alcohol + 2-methyl-2-butanol solvent mixtures at 
299.2 K. J. Chem. Eng. Data (1997) 42: pp. 511-513.
[10]  Debase  EM  &  Acree  WE.  Solubility  of  pyrene  in  ternary 
propanol + butanol + cyclohexane solvent mixtures at 299.15 K. J. 
Chem. Eng. Data (2001) 46: pp. 991-993.
[11] Zvaigzne AI, McHale MER, Powell JR, Kauppila ASM & Acree 
WE. Solubility of anthracene and pyrene in binary alcohol + alcohol 
solvent mixtures. J. Chem. Eng. Data (1995) 40: pp. 1273-1275.
[12] Zvaigzne AI & Acree WE. Solubility of anthracene in binary 
alkane + 3-methyl-1-butanol solvent mixtures. J. Chem. Eng. Data 
(1994) 39: pp. 708-710.
[13] Marthandan MV & Acree WE. Solubility of anthracene in binary 
solvent  mixtures  containing  dibutyl  ether.  J.  Chem.  Eng.  Data 
(1987) 32: pp. 301-303.
[14] Zvaigzne AI, Wolfe J & Acree WE. Solubility of anthracene in 
binary  alkane +  2-methyl-1-propanol  solvent  mixtures.  J.  Chem. 
Eng. Data  (1994) 39: pp. 541-543.
[15] Jouyban A, Khoubnasabjafari M, Chan HK, Clark BJ & Acree 
WE. Solubility prediction of anthracene in mixed solvents using a 
minimum number of experimental data. Chem. Pharm. Bull. (2002) 
50: pp. 21-25.
[16]  Ali  SH.  Measurement  and prediction  of  pyrene  solubility  in 
pure, binary, ternary and quaternary solvent systems. Fluid Phase 
Equilibr. (2008) 264: pp. 29-44.
[17] Ali  SH & Al-Rashed OA.  Solubility  of  pyrene in  simple and 
mixed solvent systems. Fluid Phase Equilibr. (2009) 281: pp. 133-
143.
[18] Pribyla KJ, Spurgin MA, Chuca I  & Acree WE. Solubility of 
anthracene in ternary 1,4-dioxane + alcohol + cyclohexane solvent 
mixtures at 298.15 K. J. Chem. Eng. Data (2000) 45: pp. 971-973.
[19]  Pribyla  KJ &  Acree WE. Solubility  of  anthracene in ternary 
dibutyl ether + alcohol + heptane solvent mixtures at 298.15 K. J. 
Chem. Eng. Data (1999) 44: pp. 1259-1261.
[20] Powell JR, Miller BJ & Acree WE. Solubility of anthracene in 
binary alcohol + 1,4-dioxane solvent mixtures. J. Chem. Eng. Data 
(1995) 40: pp. 1124-1126.
[21]  Powell  JR  &  Acree  WE.  Solubility  of  anthracene  in  binary 
alcohol + dibutyl ether solvent mixtures. J. Chem. Eng. Data (1995) 
40: pp. 914-916.
[22] Acree WE & Rytting JH. Solubility in binary solvent systems. 
IV. Prediction of naphthalene solubilities using the UNIFAC group 
contribution model. Int. J. Pharm. (1983) 13: pp. 197-204.
[23] Acree WE & Abraham MH. Solubility predictions for crystalline 
polycyclic  aromatic  hydrocarbons  (PAHs)  dissolved  in  organic 
solvents based upon the Abraham general solvation model.  Fluid 
Phase Equilibr. (2002) 201: pp. 245-258.
[24]  Acree  WE,  Zvaigzne  AI  &  Tucker  SA.  Thermochemical 
investigations  of  hydrogen-bonded  solutions:  Development  of  a 
predictive  equation  for  the  solubility  of  anthracene  in  binary 
hydrocarbon. Fluid Phase Equilibr. (1994) 92: pp. 233-253.
[25] Powell JR, McHale MER, Kauppila ASM, Acree WE, Flanders 
PH,  Varanasi  VG  &  Campbell  SW.  Prediction  of  anthracene 
solubility in alcohol + alkane solvent mixtures using binary alcohol 
+ alkane VLE data. Comparison of Kretschmer-Wiebe and mobile 
order models. Fluid Phase Equilibr. (1997) 134: pp. 185-200.
[26]  Ali  SH,  Al-Mutairi  FS  &  Fahim  MA.  Solubility  of  polycyclic 
aromatics  in  binary  solvent  mixtures  using  activity  coefficient 
models. Fluid Phase Equilibr. (2005) 230: pp. 176-183.
[27] Acree WE & Abraham MH. Solubility predictions for crystalline 
nonelectrolyte  solutes dissolved in  organic  solvents  based upon 
the Abraham general solvation model.  Can. J. Chem. (2001)  79: 
pp. 1466-1476.
[28] Hansen HK, Riverol C & Acree WE. Solubilities of anthracene, 
fluoranthene  and  pyrene  in  organic  solvents:  Comparison  of 

calculated values using UNIFAC and modified UNIFAC (Dortmund) 
models with experimental data and values using the mobile order 
theory. Can. J. Chem. Eng. (2000) 78: pp. 1168-1174.
[29] Carreira LA, Hilal S & Karickhoff SW. “Estimation of chemical 
reactivity parameters and physical properties of organic molecules 
using  SPARC.”  In  Theoretical  and  computational  chemistry:  
quantitative treatment  of  solute/solvent interactions.  Politzer  P & 
Murray JS (Eds.), Elsevier, New York, 1994, pp. 291-353.
[30] Hilal SH, Bornander LL & Carreira LA. Hydration equilibrium 
constants of aldehydes, ketones and quinazolines.  QSAR Comb. 
Sci. (2005) 24: pp. 631-638.
[31]  Hilal  SH,  Carreira  LA &  Karickhoff  SW.  Prediction  of  the 
solubility, activity coefficient, gas/liquid and liquid/liquid distribution 
coefficients of organic compounds.  QSAR Comb. Sci. (2004)  23: 
pp. 709-720.
[32]  Hilal  SH,  Karickhoff  SW & Carreira  LA.  A rigorous test  for 
SPARC's chemical reactivity models: Estimation of more than 4300 
ionization pKas. Quant. Struc.-Act. Relat. (1995) 14: pp. 348-355.
[33] Hilal SH, Karickhoff SW & Carreira LA. Prediction of the vapor 
pressure boiling point, heat of vaporization and diffusion coefficient 
of organic compounds. QSAR Comb. Sci. (2003) 22: pp. 565-574.
[34]  Hilal  SH,  Karickhoff  SW,  Carreira  LA  &  Shrestha  BP. 
Estimation  of  carboxylic  ester  hydrolysis  rate  constants.  QSAR 
Comb. Sci. (2003) 22: pp. 917-925.
[35]  Hilal  SH,  Saravanaraj  AN,  Whiteside  T  &  Carreira  LA. 
Calculating  physical  properties  of  organic  compounds  for 
environmental  modeling  from  molecular  structure.  J.  Comput.  
Aided Mol. Des. (2007) 21: pp. 693-708.
[36] Hilal SH. Estimation of hydrolysis rate constants of carboxylic  
acid ester and phosphate ester compounds in aqueous systems  
from  molecular  structure  by  SPARC.  Ecosystems  Research 
Division,  National  Exposure  Research Laboratory,  United  States 
Environmental Protection Agency, Athens, GA, USA, 2006.
[37]  Rayne  S  &  Forest  K.  A new  class  of  perfluorinated  acid 
contaminants:  Primary  and  secondary  substituted  perfluoroalkyl 
sulfonamides  are  acidic  at  environmentally  and  toxicologically 
relevant pH values. J. Environ. Sci. Health A (2009) 44: pp. 1388-
1399.
[38]  Rayne S & Forest  K.  Perfluoroalkyl  sulfonic  and carboxylic 
acids: A critical review of physicochemical  properties, levels and 
patterns in waters and waste waters, and treatment methods.  J. 
Environ. Sci. Health A (2009) 44: pp. 1145-1199.
[39] Rayne S & Forest K. An assessment of organic solvent based 
equilibrium partitioning methods for predicting the bioconcentration 
behavior  of  perfluorinated  sulfonic  acids,  carboxylic  acids,  and 
sulfonamides.  Nature  Precedings (2009) 
http://hdl.handle.net/10101/npre.2009.3256.2.
[40] Rayne S & Forest K. Dow and Kaw,eff vs. Kow and Kaw degrees: 
Acid/base  ionization  effects  on  partitioning  properties  and 
screening  commercial  chemicals  for  long-range  transport  and 
bioaccumulation potential. J. Environ. Sci. Health A (2010) 45: pp. 
1550-1594.
[41] Rayne S & Forest K. A comparative assessment of octanol-
water partitioning and distribution constant estimation methods for 
perfluoroalkyl  carboxylates  and  sulfonates.  Nature  Precedings 
(2009) http://hdl.handle.net/10101/npre.2009.3282.2.
[42] Rayne S & Forest K. ADME/Tox WEB in silico predictions of 
longer  chain  perfluoroalkyl  carboxylic  acid  pKa values  are  more 
accurate  than  other  computational  methods.  Nature  Precedings 
(2009) http://hdl.handle.net/10101/npre.2009.2936.1.
[43]  Rayne  S  &  Forest  K.  Congener  specific  organic  carbon 
normalized soil and sediment-water partitioning coefficients for the 
C1 through C8 perfluorinated alkylsulfonic and alkylcarboxylic acids. 
J. Environ. Sci. Health A (2009) 44: pp. 1374-1387.
[44] Rayne S & Forest K. Re-evaluating the list of high-production 
chemicals  predicted  to  become  Arctic  contaminants.  Nature 
Precedings (2010) doi:10.1038/npre.2010.4436.1.

3

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.6

64
8.

1 
: P

os
te

d 
26

 N
ov

 2
01

1



[45] Rayne S & Forest K. Modeling the hydrolysis of perfluorinated 
compounds  containing  carboxylic  and  phosphoric  acid  ester 
functions and sulfonamide groups. J. Env. Sci. Health A (2010) 45: 
pp. 432-446.
[46] Rayne S, Forest K & Friesen KJ. Estimated congener specific 
gas phase atmospheric behavior and fractionation of perfluoroalkyl 
compounds: Rates of reaction with atmospheric oxidants, air-water 
partitioning,  and  wet/dry  deposition  lifetimes.  J.  Environ.  Sci.  
Health A (2009) 44: pp. 936-954.
[47]  Martin  A,  Wu  PL,  Adjei  A,  Beerbower  A &  Prausnitz  JM. 
Extended  Hansen  solubility  approach:  Naphthalene  in  individual 
solvents. J. Pharmaceut. Sci. (1981) 70: pp. 1260-1264.
[48]  Ward  HL.  The  solubility  relations  of  naphthalene.  J.  Phys. 
Chem. (1926) 30: pp. 1316-1333.
[49] Roy LE, Hernandez CE & Acree WE. Solubility of anthracene 
in organic nonelectrolyte solvents. Comparison of observed versus 
predicted  values  based  upon  mobile  order  theory.  Polycycl. 
Aromat. Comp. (1999) 13: pp. 105-116.
[50] Al-Sharrah GK, Ali SH & Fahim MA. Solubility of anthracene in 
two binary solvents containing toluene. Fluid Phase Equilibr. (2002) 
193: pp. 191-201.
[51] Powell JR, Coym KS & Acree WE. Solubility of anthracene in 
binary alcohol + 2-methoxyethyl ether solvent mixtures.  J. Chem. 
Eng. Data (1997) 42: pp. 395-397.
[52]  Cepeda  EA  &  Diaz  M.  Solubility  of  anthracene  and 
anthraquinone in acetonitrile, methyl ethyl ketone, isopropol alcohol 
and their mixtures. Fluid Phase Equilibr. (1996) 121: pp. 267-272.
[53]  Roy  LE,  Hernandez  CE,  Reddy  GD,  Sanders  JT,  Deng  T, 
Tuggle MB & Acree WE. Solubility of anthracene in binary alkane + 
2-ethyl-1-hexanol  and  alkane  +  1-pentanol  solvent  mixtures  at 
298.2 K. J. Chem. Eng. Data (1998) 43: pp. 493-495.

4

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.6

64
8.

1 
: P

os
te

d 
26

 N
ov

 2
01

1


