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The large number of historical and current organic chemicals in commerce, 
and the ability of these compounds to make their way from industrial to 
remote regions, has resulted in concerted efforts to predict which 
chemicals have the capacity to migrate from where they are used/disposed 
to areas such as the Arctic.[1-5] In the absence of reliable experimental 
data on the physicochemical properties of most commercial chemicals, and 
the lack of resources for monitoring environmental samples for all possible 
analytes, substantial progress has been made using computational tools 
such as property estimation programs (e.g., EPI Suite, COSMOtherm, 
SPARC, etc.) in concert with multimedia models (e.g., CalTOX, CEMCLIII, 
SimpleBOX, ChemRange, ELPOS, Globo-POP, BETR, etc.) to assess 
whether current or legacy compounds may be contaminating remote 
regions.[6,7] These methods are also used to predict which new 
compounds and structural functionalities are likely to be sufficiently 
persistent, bioaccumulative, toxic, and amenable to long range transport to 
pose a risk to Arctic ecosystems. In recent work, a suite of 120 high 
production volume chemicals were screened from an initial dataset of 
>100,000 compounds as potential Arctic contaminants.[8] In the current 
work, we critically assess members of this proposed list for their possible 
rapid reactivity in environmental systems that would prevent substantial 
accumulation or transport in the environment and accumulation in vivo, as 
well as whether the investigated physicochemical properties are adequate 
for the intended environmental screening purposes.

The list of 120 proposed potential Arctic contaminants is given in Appendix 
Table 1. The following five acyl halides are present in the list:

Acyl halides are too reactive toward aqueous or atmospheric hydrolysis to 
be transported intact from industrial sources to remote regions, or to exist 
long in environmental systems or in vivo. Rapid hydrolysis of these 
compounds would form the corresponding acids (perfluorobutanoic acid in 
the case of CAS 335422, the perfluorohexane and perfluorooctane sulfonic 
acids for CAS 423507 and 307357, respectively, and the carboxylic acids 
for CAS 719324 and 52314677). A threshold persistence from several 
months to a year in surface media has been postulated as a prerequisite 
for the possibility of significant Arctic contamination.[2] Hydrolysis rates of 
acyl halides in various environmental media, including surface waters, 

soils, the atmosphere, and in vivo, will be much shorter than these 
thresholds. Thus, acyl halides should not likely be present on a list of 
potential candidates that requires compounds to be sufficiently persistent 
to become Arctic contaminants.

Similarly, isocyanates (e.g., CAS 329011, 102363, and 34893920), 
epoxides (e.g., 428591), anhydrides (e.g., 115275), and peroxides (e.g., 
78637 and 3457612) are also reactive toward hydrolysis. This suggests the 
following compounds (and similar molecules) should perhaps also be 
removed from potential Arctic contaminant screening lists due to their likely 
very short persistence in environmental and biological systems:

The reactivity of alkyl halides varies substantially depending on the halide 
under consideration, the electron withdrawing or releasing nature of 
substituents on the alkyl chain, as well as any steric hindrance in the 
molecule. We have previously shown that fluorotelomer iodides may have 
hydrolytic half-lives of ~130 days in natural waters,[9] suggesting that CAS 
2043530 and 2043541 may not be sufficiently persistent to become 
potential Arctic contaminants.

Several carboxylic acid esters have also been proposed as possible Arctic 
contaminants. As with the other classes considered above, the carboxylic 
acid esters are susceptible to abiotic hydrolysis. Using the SPARC 
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hydrolysis module (September 2009 release w4.5.1529-s4.5.1529; 
http://ibmlc2.chem.uga.edu/sparc/), which we [9] and others [10] have 
validated, we estimate the following half-lives for these esters: CAS 
50594440, 4 hours; CAS 50594779, 22 days; CAS 75147205, 5 min; CAS 
60825265, 63 days; and CAS 1539044, 215 days.

With short half-lives, these esters are not persistent. Depending on their 
current use and atmospheric transport patterns, under a strong kinetic flux 
from industrialized regions, Arctic accumulation could occur (similar to α- 
and β-endosulfan, which have hydrolytic half lives of 11 and 19 days, 
respectively,[11] but which are known to occur widely in Arctic regions 
[12,13] due to continuing fluxes that offset in situ degradation rates).

The cobalt(2+) salt of neodecanoic acid (CAS 52270447; a mixture of 
branched alkylcarboxylic acids with the common structural formula 
C10H20O2) has been proposed as a potential Arctic contaminant. Transition 
metal (TM) carboxylate salts would be relatively non-volatile, and any 
aquatic exposure between industrialized and remote regions would result 
in cation exchange, leading to a dominantly non-TM counterion such as 
Na+, Ca2+, etc. Any consideration of neodecanoic acid as an environmental 
contaminant should likely be as either its neutral form (proton 
countercation) or strictly as the carboxylate form.

Finally, several acidic compounds have been proposed as Arctic 
contaminants (e.g., CAS 1918021, 115286, 10469097, 335671, 88062, 
118796, 88857, 98737, 320729, 63734623, and 133493). In general, 
molecular (undissociated) forms of chemicals are substantially more 
volatile than the anionic (dissociated) forms. Thus, in Kow/Kaw (octanol-water 
partitioning coefficient/air-water partitioning coefficient) based screening 
assessments for modes and potential of Arctic contamination (e.g. ref. [1-
8]), the anionic forms (even for weak acids) need to be explicitly taken into 
account. A similar requirement applies for weak and strong bases being 
considered for Arctic contamination potential and other environmental fate 
modeling. Most Kow/Kaw calculations conducted on these acids only 
consider the molecular form, although in the majority of cases the acids are 
sufficiently strong that the molecules are effectively completely dissociated 
under most environmental and biological conditions.

For example, the pKa of pentachlorobenzenethiol (CAS 133493) is 
predicted by the SPARC acidity constant estimation module (September 
2009 release w4.5.1529-s4.5.1529; http://ibmlc2.chem.uga.edu/sparc/) to 
be 1.91, or a modestly strong acid. 2,4,6-Trichlorophenol (CAS 88062) and 
2,4,6-tribromophenol (CAS 118796) have experimental pKa values of 6.00 
[14,15] and 6.08,[16] respectively. n-PFOA (CAS 335671) has an 
experimental pKa of ~0 [17] in excellent agreement with computational 
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estimates.[18-20] For the five remaining acids, SPARC estimated pKa 

values are 2.66 (CAS 1918021), 1.46 (CAS 115286), 2.15 (CAS 
10469097), 5.52 (CAS 88857), 5.20 (CAS 98737), 2.22 (CAS 320729), and 
3.64 (CAS 63734623).

The substantial, if not effectively complete, dissociation of these acids in 
aqueous solution will significantly affect their physicochemical properties. 
In Figure 1, we present the SPARC estimated log Dow (octanol-water 
distribution coefficient) and log Kaw as functions of pH for these 11 acidic 
compounds on the potential Arctic contaminant screening list.

Figure 1. SPARC estimated log Dow and log Kaw as a function of pH for 11 
acidic compounds on the potential Arctic contaminant screening list.

As expected, the log Dow and log Kaw both decline substantially with 
increasing pH, as the molecules deprotonate to the less lipophilic and less 
volatile anionic forms. Differences of up to 9 log Dow units are observed 
between the molecular and fully deprotonated forms of some compounds, 
and differences of up to 6 log Dow units are found between the molecular 
species and the composite speciation present at pH 7. In a number of 
cases, the molecular form is predicted to be substantially lipophilic, 
whereas the anionic form is predicted to be substantially hydrophilic. The 
effect of ionization has a greater pH dependent influence on the Kaw. 
Differences of up to 24 log Kaw units occur between the molecular and fully 
deprotonated forms, and up to 10 log Kaw units between the molecular 
species and the composite speciation at pH 7.

Consequently, in any Kow/Kaw based screening assessment for Arctic 
contamination potential, the acidity/basicity of all compounds at relevant 
pH values (varying depending on nature of the freshwater, marine, soil, 
atmospheric, or biological system under study) must explicitly be taken into 
consideration. Otherwise, spurious and/or erroneous long range transport 
potential and bioaccumulation potential conclusions are likely. Within this 
context, current lists of potential Arctic contaminants likely require 
additional screening and modeling efforts that more fully incorporate 
knowledge regarding likely rapid reactivity in environmental systems, and 
using physicochemical properties more relevant to the systems under 
investigation.

References and Notes
a Ecologica Research, 412-3311 Wilson Street, Penticton, British Columbia, 
V2A 8J3, Canada
b Department of Chemistry, Okanagan College, 583 Duncan Avenue West, 
Penticton, British Columbia, V2A 8E1, Canada

* Corresponding author: rayne.sierra@gmail.com

[1] Wania, F. “Assessing the potential of persistent organic chemicals for 
long-range transport and accumulation in polar regions.” Environ. Sci.  
Technol. 2003, 37, 1344-1351.

[2] Wania, F. “Potential of degradable organic chemicals for absolute and 
relative enrichment in the Arctic.” Environ. Sci. Technol. 2006, 40, 569-577.

[3] Kelly, B.C.; Ikonomou, M.G.; Blair, J.D.; Morin, A.E.; Gobas, F.A.P.C. 
“Food web-specific biomagnification of persistent organic pollutants.” 
Science 2007, 317, 236-239 (incl. erratum posted online 5 October 2007).

[4] Czub, G.; Wania, F.; McLachlan, M.S. “Combining long-range transport 
and bioaccumulation considerations to identify potential Arctic 
contaminants.” Environ. Sci. Technol. 2008, 42, 3704-3709.

[5] Howard, P.H.; Muir, D.C.G. “Identifying new persistent and 
bioaccumulative organics among chemicals in commerce.” Environ. Sci.  
Technol. 2010, 44, 2277-2285.

[6] Fenner, K.; Scheringer, M.; Macleod, M.; Matthies, M.; Mckone, T.; 
Stroebe, M.; Beyer, A.; Bonnell, M.; Le Gall, A.C.; Klasmeier, J.; Mackay, 
D.; Van De Meent, D.; Pennington, D.; Scharenberg, B.; Suzuki, N.; Wania, 
F. “Comparing estimates of persistence and long-range transport potential 
among multimedia models.” Environ. Sci. Technol. 2005, 39, 1932-1942.

[7] Klasmeier. J.; Matthies, M.; Macleod, M.; Fenner, K.; Scheringer, M.; 
Stroebe, M.; Le Gall, A.C.; Mckone, T,; Van De Meent, D.; Wania, F. 
“Application of multimedia models for screening assessment of long-range 
transport potential and overall persistence.” Environ. Sci. Technol. 2006, 
40, 53-60.

[8] Brown, T.N.; Wania, F. “Screening chemicals for the potential to be 
persistent organic pollutants: A case study of Arctic contaminants.” 
Environ. Sci. Technol. 2008, 42, 5202-5209.

[9] Rayne, S.; Forest, K. “Modeling the hydrolysis of perfluorinated 
compounds containing carboxylic and phosphoric acid ester functions and 
sulfonamide groups.” J. Env. Sci. Health A 2009, 45, 432-446.

[10] Hilal, S.H.; Karickhoff, S.W.; Carreira, L.A.; Shrestha, B.P. “Estimation 
of carboxylic ester hydrolysis rate constants.” QSAR Comb. Sci. 2003, 22, 
917-925.

[11] Fan, S. “Draft Endosulfan Risk Characterization Document: Volume III 
- Environmental Fate.” Department of Pesticide Regulation, Environmental 
Monitoring Branch, California Environmental Protection Agency: 
Sacramento, CA, USA, 2007.

[12] Weber, J.; Halsall, C.J.; Muir, D.C.G.; Teixeira, C.; Burniston, D.A.; 
Strachan, W.M.J.; Hung, H.; Mackay, N.; Arnold, D.; Kylin, H. “Endosulfan 
and γ-HCH in the Arctic: An assessment of surface seawater 
concentrations and air-sea exchange.” Environ. Sci. Technol. 2008, 40, 
7570-7576.

[13] Weber, J.; Halsall, C.J.; Muir, D.; Teixeira, C.; Small, J.; Solomon, K.; 
Hermanson, M.; Hung, H.; Bidleman, T. “Endosulfan, a global pesticide: A 
review of its fate in the environment and occurrence in the Arctic.” Sci.  
Total Environ. 2009, doi:10.1016/j.scitotenv.2009.10.077.

[14] Kishino, T.; Kobayashi, K. “Relation between the chemical structures of 
chlorophenols and their dissociation constants and partition coefficients in 
several solvent-water systems.” Wat. Res. 1994, 28, 1547-1552.

[15] Huang, G.L.; Xiao, H.; Chi, J.; Shiu, W.Y.; Mackay, D. “Effects of pH on 
the aqueous solubility of selected chlorinated phenols.” J. Chem. Eng. 
Data 2000, 45, 411-414.

[16] Han, J.; Lee, H.; Tao, F.M. “Molecular structures and properties of the 
complete series of bromophenols: Density functional theory calculations.” 
J. Phys. Chem. A 2005, 109, 5186-5192.

[17] Cheng, J.; Psillakis, E.; Hoffmann, M.R.; Colussi, A.J. “Acid 
dissociation versus molecular association of perfluoroalkyl oxoacids: 
Environmental implications.” J. Phys. Chem. A 2009, 113, 8152-8156.

3

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

43
6.

1 
: P

os
te

d 
10

 M
ay

 2
01

0



[18] Goss, K.U. “The pKa values of PFOA and other highly fluorinated 
carboxylic acids.” Environ. Sci. Technol. 2008, 42, 456-458.

[19] Rayne, S.; Forest, K. “Computational approaches may underestimate 
pKa values of longer-chain perfluorinated carboxylic acids: Implications for 
assessing environmental and biological effects.” J. Env. Sci. Health A 2009, 
44, 317-326.

[20] Rayne, S.; Forest, K. “Theoretical studies on the pKa values of 
perfluoroalkyl carboxylic acids.” J. Mol. Struct. THEOCHEM 2010, 949, 60-
69.

4

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

43
6.

1 
: P

os
te

d 
10

 M
ay

 2
01

0



Appendix Table 1. List high production volume chemicals predicted to become Arctic contaminants or which match the structural profile of known Arctic 
contaminants. Taken from ref. [8].

CAS Name
115286 1,4,5,6,7,7-hexachloro-5-norbornene-2,3-dicarboxylic acid
1691992 N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-N-(2-hydroxyethyl)-1-octanesulfonamide
2157199 endosulfan alcohol
25637994 hexabromocyclododecane (1,3,5,7,9,11-hexabromocyclododecane)
27905459 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl, 2-propenoic acid ester
61262531 1,1′-[1,2-ethanediylbis(oxy)]bis-2,3,4,5,6-pentabromobenzene
77474 1,2,3,4,5,5-hexachloro-1,3-cyclopentadiene
87616 1,2,3-trichlorobenzene
87683 1,1,2,3,4,4-hexachloro-1,3-butadiene
98157 1-chloro-3-(trifluoromethyl)-benzene
98464 1-nitro-3-(trifluoromethyl)-benzene
98566 1-chloro-4-(trifluoromethyl)-benzene
108770 2,4,6-trichloro-1,3,5-triazine
115253 octafluorocyclobutane
120821 1,2,4-trichlorobenzene
307357 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-1-octanesulfonyl fluoride
311897 1,1,2,2,3,3,4,4,4-nonafluoro-N,N-bis(nonafluorobutyl)-1-butanamine
328847 1,2-dichloro-4-(trifluoromethyl)-benzene
329011 1-isocyanato-3-(trifluoromethyl)-benzene
335422 heptafluoro-butanoyl fluoride
338841 1,1,2,2,3,3,4,4,5,5,5-undecafluoro-N,N-bis(undecafluoropentyl)-pentanamine
423507 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-1-hexanesulfonyl fluoride
428591 trifluoro(trifluoromethyl)-oxirane
647427 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octanol
678397 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanol
719324 2,3,5,6-tetrachloro-1,4-benzenedicarbonyl dichloride
865861 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heneicosafluoro-1-dodecanol
1163195 decabromodiphenylether
1737935 3,5-dichloro-2,4,6-trifluoropyridine
1897456 chlorothalonil
1918021 picloram
1929824 nitrapyrin
2043530 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-heptadecafluoro-10-iododecane
2043541 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heneicosafluoro-12-iodododecane
2043574 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoro-8-iodooctane
2402791 2,3,5,6-tetrachloropyridine
3194556 1,2,5,6,9,10-hexabromocyclododecane
3825261 ammonium perfluorooctanoate
5848931 5-chloro-3-(trichloromethyl)-1,2,4-thiadiazole
10469097 3,4,5,6-tetrachloro-2-pyridinecarboxylic acid
14143603 4-amino-3,5,6-trichloro-2-pyridinecarbonitrile
17824838 3,4,5,6-tetrachloro-2-pyridinecarbonitrile
32534819 pentabromodiphenylether (BDE-99)
32536520 octabromodiphenylether (BDE-203)
36483600 hexabromodiphenylether (BDE-167)
40088479 tetrabromodiphenylether (BDE-55)
52314677 3-(2,2-dichloroethenyl)-2,2-dimethyl-cyclopropanecarbonyl chloride
59808785 tetrachlorocyclopentane (1,2,3,4-tetrachlorocyclopentane)
60825265 (3,5,6-trichloro-2-pyridinyl)oxy-acetic acid, methyl ester
63936561 nonabromodiphenylether (BDE-206)
68928803 heptabromodiphenylether (BDE-173)
69045789 2-chloro-5-trichloromethylpyridine
86508421 perfluoro compounds C5-18 (perfluoroundecane)
138495428 1,1,1,2,2,3,4,5,5,5-decafluoropentane
163702076 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxy-butane
101053 anilazine
115275 1,4,5,6,7,7-hexachloro-5-norbornene-2,3-dicarboxylic anhydride
115297 endosulfan
3278895 1,3,5-tribromo-2-(2-propenyloxy)-benzene
3734483 chlordene
24448097 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-N-(2-hydroxyethyl)-N-methyl-1-octanesulfonamide
78637 1,1′-(1,1,4,4-tetramethyl-1,4-butanediyl)bis[2-(1,1-dimethylethyl) peroxide
80079 1,1′-sulfonylbis[4-chlorobenzene]
80104 dichlorodiphenylsilane
81141 1-[4-(1,1-dimethylethyl)-2,6-dimethyl-3,5-dinitrophenyl]-ethanone
81152 1-(1,1-dimethylethyl)-3,5-dimethyl-2,4,6-trinitrobenzene
84515 2-ethyl-9,10-anthracenedione
88062 2,4,6-trichlorophenol
88857 dinoseb
98737 4-(1,1-dimethylethyl)-benzoic acid
101633 1,1′-oxybis 4-nitrobenzene
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102363 1,2-dichloro-4-isocyanatobenzene
115322 dicofol
118796 2,4,6-tribromophenol
136607 benzoic acid, butyl ester
144796 chloromethyldiphenylsilane
147820 2,4,6-tribromobenzenamine
320729 3,5-dichloro-2-hydroxybenzoic acid
540976 2,2,4,4,6,6,8,8,10,10,12,12-dodecamethylcyclohexasiloxane
1185097 1,1,2,2-tetrachloro-ethanesulfenyl chloride
1539044 1,4-benzenedicarboxylic acid, 1,4-diphenyl ester
1836755 nitrofen
2116849 1,1,1,5,5,5-hexamethyl-3-phenyl-3-[(trimethylsilyl)oxy]-trisiloxane
2392485 4-chloro-1-(2,4-dichlorophenoxy)-2-nitrobenzene
3457612 1,1-dimethylethyl 1,1-dimethylethyl peroxide
13472087 2,2′-azobis-2-methylbutanenitrile
34893920 1,3-dichloro-5-isocyanatobenzene
35578473 bis(4-bromophenyl)-ethanedione
50594440 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrophenol, 1-acetate
50594779 3-[2-chloro-4-(trifluoromethyl)phenoxy]-phenol, 1-acetate
52270447 neodecanoic acid, cobalt(2+) salt
63734623 3-(2-chloro-4-trifluoromethylphenoxy)-benzoic acid
64667330 4,6,6,6-tetrachloro-3,3-dimethylhexanoic acid methyl ester
50293 p,p′-DDT
58899 γ-HCH
68360 1,4-bis(trichloromethyl)-benzene
82688 pentachloronitrobenzene
87843 1,2,3,4,5-pentabromo-6-chlorocyclohexane
95943 1,2,4,5-tetrachlorobenzene
117088 4,5,6,7-tetrachloro-1,3-isobenzofurandione
118741 HCB
133493 pentachlorobenzenethiol
626391 1,3,5-tribromobenzene
632791 4,5,6,7-tetrabromo-1,3-isobenzofurandione
634662 1,2,3,4-tetrachlorobenzene
1134049 2,3,4,5-tetrachloro-6-(trichloromethyl)-pyridine
1203867 2,2-dichloro-1-(2,4,5-trichlorophenyl)-ethanone
1817136 3,6-dichloro-2-(trichloromethyl)-pyridine
2176627 pentachloropyridine
5216251 1-chloro-4-(trichloromethyl)-benzene
17700093 2,3,4-trichloronitrobenzene
29091096 2,4-dichloro-1,3-dinitro-5-(trifluoromethyl)-benzene
30554724 tetrabromodichlorocyclohexane (1,2,3,4-tetrabromo-5,6-dichlorocyclohexane)
62111471 heptachlorocyclopentene (1,2,3,3,4,4,5-heptachloro-1-cyclopentene)
68258902 heptachlorocyclopentane (1,2,3,3,4,5,5-heptachlorocyclopentane)
68258913 hexachlorocyclopentane (1,2,2,3,4,4-hexachlorocyclopentane)
69045836 2,3-dichloro-5-trichloromethylpyridine
72030263 hexachlorocyclopentene (1,2,3,4,5,5-hexachloro-1-cyclopentene)
73588428 1,3-dichloro-5-(1,3,3,3-tetrachloro-1-methylpropyl)-benzene
75147205 2,2,3,4,4-pentachloro-3-butenoic acid, butyl ester
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