Ecophysiological traits of grasses: resolving the effects of photosynthetic pathway and phylogeny

Samuel. H. Taylor', Mark Rees*, Stephen P. Hulme", Rob. P. Freckleton®, Brad S. Ripley?, F. lan Woodward*, Colin P. Osborne’
'University of Sheffield, UK, “Rhodes University, RSA

Nature Precedings : doi:10.1038/npre.2009.3937.1 : Posted 3 Nov 2009

Introduction: C, photosynthesis is an important example of convergent evolution in plants, having arisen in Bambusoideae/Ehrhartoideae/Pooideac  DESIQN: Species were picked at Vi R
eudicots, monocots and diatoms®. Comparisons between such diverse groups are confounded by phylogenetic and Panicens (x =4, Pabioum clesle) A andom from Cs, Cy NAD-me and C, v/
. ’ . ] p . . g p y p y g . Paniceae (x = 9, Setaria clade) A NADP-me clades (left) Plants were 1‘ g
ecological differences, so that only broad generalisations can be made about the role of C, photosynthesis in Paniceae (x = 9, C3) A Z&  grownin4l potsin aglasshouse, |
determining ecophysiological traits. However, 60% of C, species occur in the grasses (Poaceae) and molecular Andropogoneae @ P & ';?prt]t‘;"ec'a"waterid & U”feg'“setd
i i ! i .. .. . o r 7 Il asS excnange ana walter
phylogenetic techniques confirm that there are between 8 and 17 independent origins of C, photosynthesis in the 2”3'“;’.0"’236. Qé“ & pogtemials were megsured_ For 3
Poaceae®. In a screening experiment, we compared leaf physiology and growth traits across several major undiodeac @ | o subset of species, sequential
_ o _ _ _ _ _ _ Micrairoideae @ 3 q Ve h 9
Independent C; & C, groups within the Poaceae, asking 1) which traits differ consistently between photosynthetic Danthonioideac @ A @ C, NAD-me f_e_S”“C“VG af‘(’fStS and curve- i
types and 2) which traits differ consistently between clades within each photosynthetic type Chioridoideac @ A @ C4, NADP-me tting were used Lo estimate growt
' traits at a common, small size.
Leaf physiology: C,photosynthesis is characterised by CO, uptake at Growth analysis: Improved resource use efficiency is expected to correlate with differences in growth allocation
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