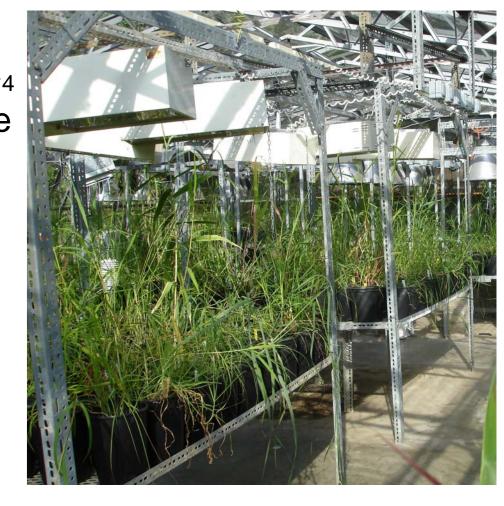


Ecophysiological traits of grasses: resolving the effects of photosynthetic pathway and phylogeny

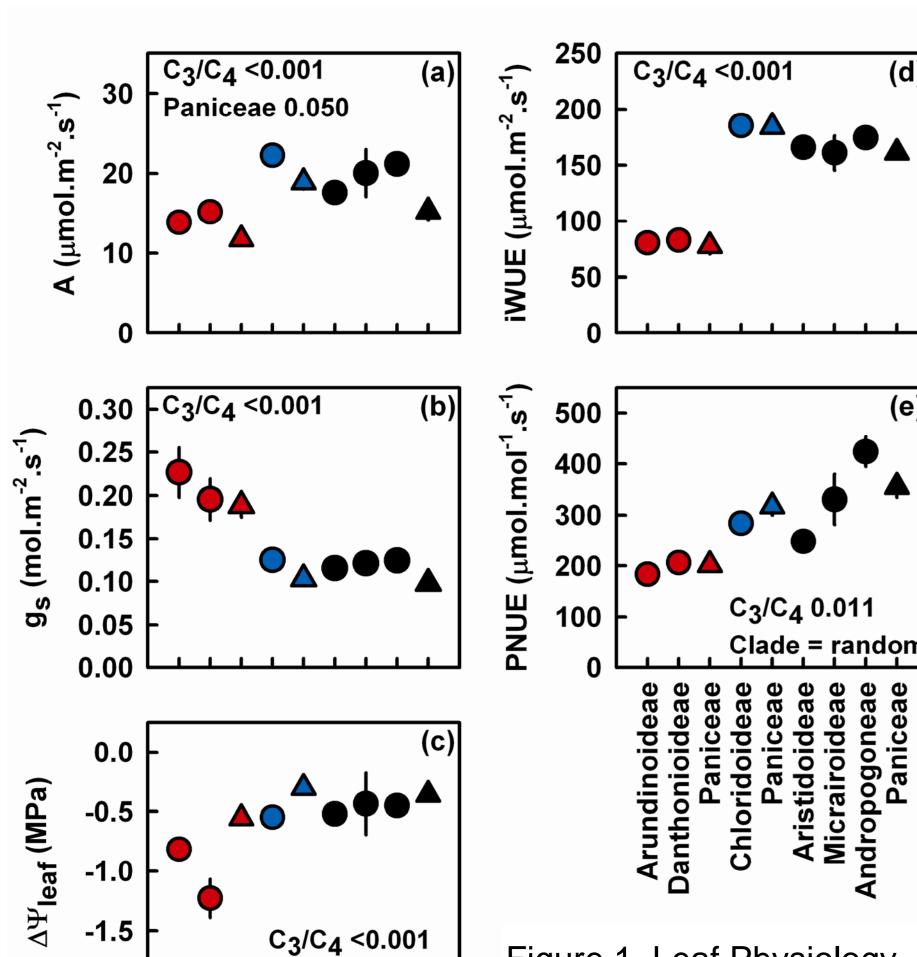
Samuel. H. Taylor¹, Mark Rees¹, Stephen P. Hulme¹, Rob. P. Freckleton¹, Brad S. Ripley², F. Ian Woodward¹, Colin P. Osborne¹

¹University of Sheffield, UK, ²Rhodes University, RSA

Introduction: C₄ photosynthesis is an important example of convergent evolution in plants, having arisen in eudicots, monocots and diatoms¹. Comparisons between such diverse groups are confounded by phylogenetic and ecological differences, so that only broad generalisations can be made about the role of C₄ photosynthesis in determining ecophysiological traits. However, 60% of C₄ species occur in the grasses (Poaceae) and molecular phylogenetic techniques confirm that there are between 8 and 17 independent origins of C₄ photosynthesis in the Poaceae². In a screening experiment, we compared leaf physiology and growth traits across several major independent C₃ & C₄ groups within the Poaceae, asking 1) which traits differ consistently between photosynthetic types and 2) which traits differ consistently between clades within each photosynthetic type.


Growth analysis: Improved resource use efficiency is expected to correlate with differences in growth allocation

between C₃ & C₄ plants³. If higher A is translated into improved growth rate per unit canopy area (unit leaf rate, ULR), C₄


plants may show either higher relative growth rates per unit total mass (RGR), or a greater range of allocation strategies

mediated via changes in the leaf mass ratio (LMR) and root mass ratio (RMR)³. The resulting effect on canopy leaf area ratio

Design: Species were picked at random from C₃, C₄ NAD-me and C₄ NADP-me clades (left). Plants were grown in 4 l. pots in a glasshouse, kept well-watered & unfertilised (right) Gas exchange and water potentials were measured. For a subset of species, sequential destructive harvests and curve-fitting were used to estimate growth traits at a common, small size.

Leaf physiology: C_4 photosynthesis is characterised by CO_2 uptake at low concentrations (via PEPc) and saturation of Rubisco with CO_2 , minimizing photorespiration and leading to improvements in Rubisco carboxylation efficiency. C_4 plants are thus expected to show higher net CO_2 assimilation rates (A), lower stomatal conductance (g_s), lower leaf nitrogen (N_{mass} , N_{area}) and improved photosynthetic nitrogen and intrinsic water use efficiencies ($PNUE = A/N_{area}$, and $iWUE = A/g_s$ respectively) under a range of conditions³.

Paniceae 0.003

Figure 1. Leaf Physiology, mean ± s.e., for key see 'Design'. (a) Net CO₂ assimilation rate, (b) Stomatal conductance, (c) Diurnal water potential gradient, (d) Intrinsic water use efficiency, (e) Photosynthetic nitrogen use efficiency

• Unexpectedly, N_{mass} showed no significant patterns (Fig. 2a). Paniceae had lower N_{area} within each type (Fig. 2b), indicating that leaf area per unit leaf mass is high in this group. N_{area} was similar between C_3 and C_4 NAD-me.

We found

- Contrasts between C_3 and C_4 photosynthetic types in A, g_s , $\Delta \Psi_{leaf}$, iWUE and PNUE (Fig. 1a e). Within either type, g_s and iWUE showed strong convergence.
- *PNUE* showed divergence between clades and $\Delta \Psi_{leaf}$ showed divergence between Paniceae and other clades.

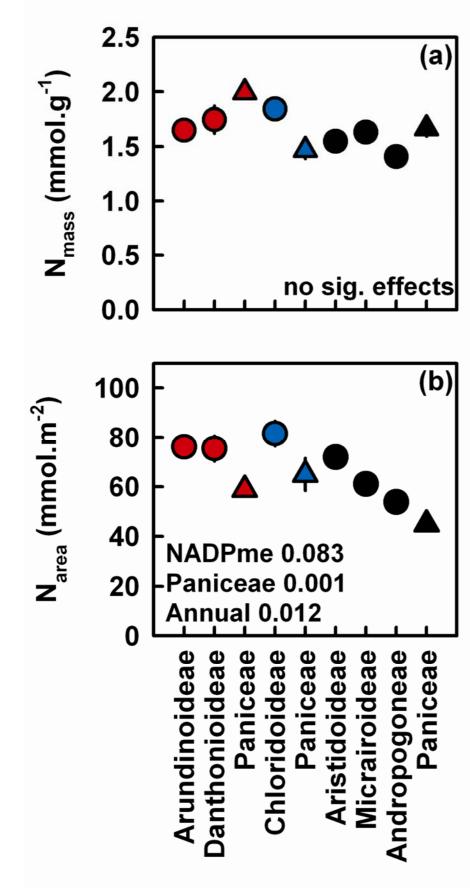


Figure 2. Foliar nitrogen, mean ± s.e., for key see 'Design'. (a) N per unit mass, (b) N per unit leaf area

(LAR) is influenced by the specific leaf area (SLA) (LAR = SLA \times LMR).

- No increase in *ULR* and *RGR* in C₄ types
 (Fig. 3a & b), despite higher *A* and greater resource use efficiencies at the leaf level.
- Consistent, significant effects on growth rates and biomass allocation due to:
- 1) Classification as perennial vs. annual/weak perennial (annuals showed greater *SLA*, *LAR and LMR*, data not shown).
- 2) Paniceae, which showed increased *RGR*, *LAR* & *LMR*, and reduced *RMR* & *ULR* (Figs. 3 & 4).
- *SLA* (Fig. 4a) was the only growth trait to show a random effect of clade, indicating divergence between phylogenetic groups.
- The C₄ NADP-me subtype was associated with more extreme differences in allocation.

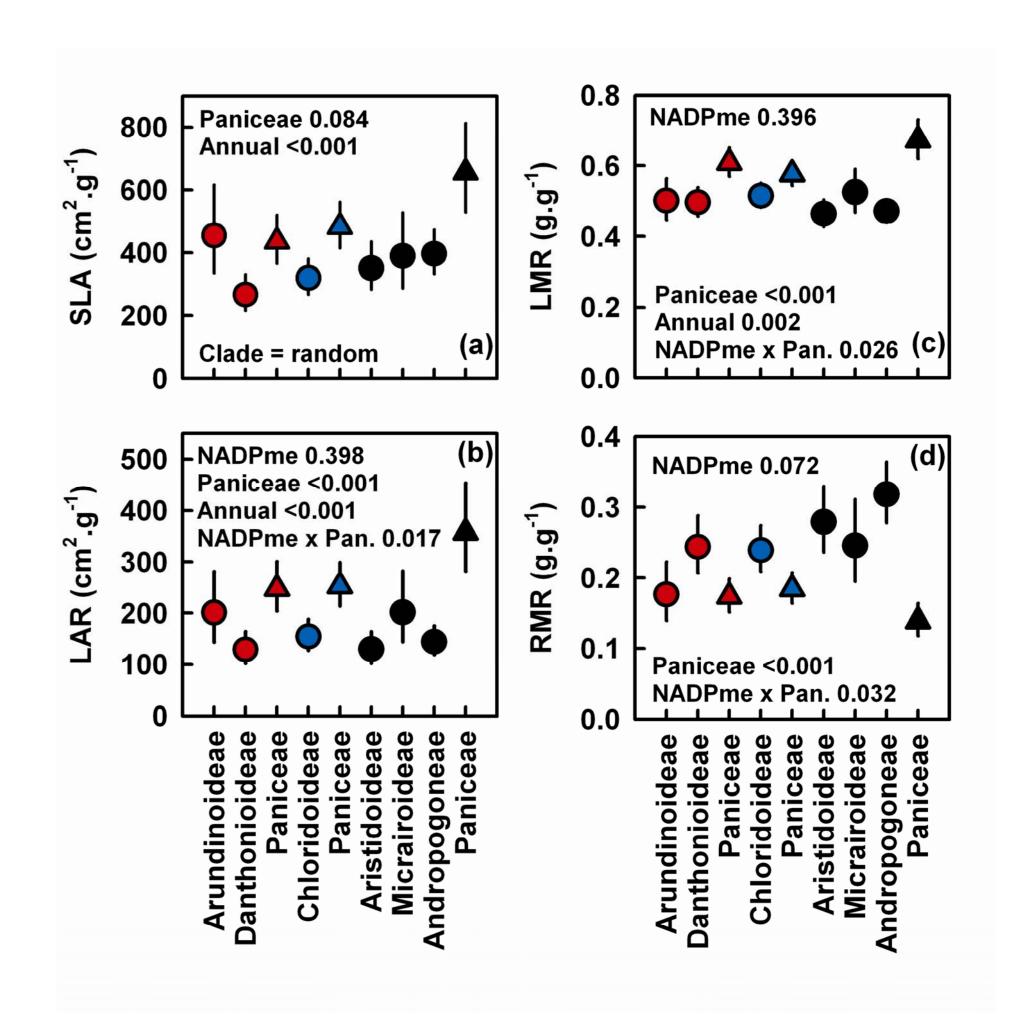


Figure 4. Whole plant allocation of growth, mean ± s.e., for key see 'Design'. (a) Specific Leaf Area, (b) Leaf Area Ratio, (c) Leaf Mass Ratio, (d) Root Mass Ratio

Conclusions:

leaf area

Figure 3. Growth efficiency, mean ±

s.e., for key see 'Design'. (a) growth

per whole plant mass, (b) growth per

- Some traits associated with C_3 and C_4 photosynthesis show strong convergence across independent lineages (low g_s , high iWUE), whilst others vary substantially between lineages (high A, high PNUE). C_3 and C_4 photosynthesis were not distinguished by leaf N, but low g_s in C_4 types relative to C_3 was associated with reduced diurnal water potential gradients.
- Within photosynthetic types, clades differed in allocation of resources at the leaf (*SLA*, *PNUE & N*_{area}) and whole plant (LAR, LMR) levels (esp. between Paniceae and others); there was some evidence that this divergence was most extreme in the C₄ NADP-me type.
- Ecophysiological traits linked to C₄ photosynthesis in grasses are influenced by phylogeny and may show substantial divergence between independent C₄ lineages.

References

- ¹ Sage, R.F. (2004) The Evolution of C₄ Photosynthesis. *New Phyt. 161*: 341-370.
- ² Christin, P. et al. (2009) Integrating Phylogeny into Studies of C4 Variation in the Grasses. *Plant Physiol.* 149: 82-87.
- ³ Long, S.P. (1999) Environmental Responses. In, eds. Sage R.F. & Monson, R.K. *C*₄ *Plant Biology*. AP San

Biology. AP San Diego. pp. 215-250.

