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Abstract

The emergence of cooperation has been widely studied in the context of game theory on struc-

tured populations. Usually the individuals adopt one strategy against all their neighbors. The

structure can provide reproductive success for the cooperative strategy, at least for low values of

defection tendency. Other mechanisms, such punishment, can also be responsible for coopera-

tion emergence. But what happens if the players adopt simultaneously di�erent strategies against

each one of their opponents, not just a single one? Here we study this question in the prisoner

dilemma scenario structured on a square lattice and on a ring. We show that if an update rule is

de�ned in which the players replace the strategy that furnishes the smallest payo�, a punishment

response mechanism against defectors without imputing cost to the punishers appears, cooperation

dominates and, even if the tendency of defection is huge, cooperation still remains alive.

PACS numbers: 87.23.Kg, 87.23.Ge, 02.50.Le
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In biological systems cooperation is an emergent feature [1], which can be analyzed in the

framework of evolutionary games on graph theory. It analyzes the evolution of strategies

adopted by individuals in biological, social or other contexts, in which the interactions are

given by the links of a graph [2]. The question that has been set is why cooperation can be

established if it is costly for the cooperators [3]. Direct reciprocity [4], indirect reciprocity

[5], spatial structure [6], in which individuals have their interaction constrained by some

network of interactions, and other mechanisms have been proposed to answer this question.

The spatial structure e�ect has been widely studied and was proved to be e�cient to es-

tablish cooperation [1, 7{14]. Another mechanism is altruistic punishment where, besides

the defector and cooperator, there is the altruistic punisher who acts like a cooperator but

also pays for punishing defectors. Along with altruistic punishment, other mechanisms have

been proposed, like introduction of volunteering participation in public good games [15] and

selection among groups [16].

The cooperation problem is usually mapped into a game theory framework in which the

individuals are players. Usually the player can choose one of two strategies { cooperation

(C) or defection (D) { and uses this strategy during a game round. A strategy update can

be set, and for the next round, the players can change their strategy taking into account

the payo� earned during the round. If the players are set on the vertices of a network, they

are constrained to play against their next neighbors. Note that, if some strategy is chosen,

the same must be used against all of the opponents during the same round. Recently social

diversity has been introduced [17] in the context of cooperation in public good games. The

promotion of cooperation was analyzed by setting each individual to play di�erent games

in each neighborhood. This opens the question of what could happen if each player could

choose di�erent strategies against di�erent opponents and adopts them during the same

round. Let's state this point clearly. Suppose N individuals set on the vertices of a network.

Each player can choose di�erent strategies against each neighbor and earn di�erent payo�s

from each interaction. If the network is a square lattice, player x can choose, for example,

the (C,C,C,C) strategy set, meaning that player x chooses the C strategy against all of his

opponents.

In this letter, we study the emergence of cooperation if the players adopt di�erent strate-

gies against di�erent opponents. We use the prisoner dilemma with population structured on

a square lattice and on a ring as the scenario for the cooperation problem. The players use
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di�erent strategies against di�erent neighbors and use the imitation rule with synchronous

updating [9]. In the prisoner dilemma [18], both players receive 1 upon mutual cooperation,

� upon mutual defection; the defector receives b if the other cooperates, and the cooperator

receives 0 if the other defects. The tendency to defect is given by b (b > 1), and � is taken to

be small (�� 1). When player x interacts with y, we assume that x has the information of

(i) y's cumulative payo� and of (ii) the strategy y is using against him. In this rule players

imitate the successful strategies of their neighborhoods. Each player interacts with its next

neighbors and plays a round of one game with each opponent and earns a cumulative payo�.

Then the player, let's call it x, chooses randomly a neighbor, y, and compares both cumu-

lative payo�s P

x

and P

y

. If P

x

� P

y

, player x stays with its own strategy, but if P

x

< P

y

,

then player x adopts the opponent's strategy with probability (P

y

� P

x

)=4b [9]. So if player

x decides to copy the strategy y is using against him, according to the rules stated above, he

must also decide against which of his neighbors he will change his strategy by the new one.

We have de�ned three di�erent replacement rules that give rise to three di�erent update

rules. Let's call them just models A, B and C. We are going to focus on model A and use

the others to highlight features of the former.

In the model A, player x chooses for the replacement the interaction that gives to

him the smaller contribution for his cumulative payo�. The possible confrontations are

(D,C),(C,C),(D,D) and (C,D), where the �rst entry is x's strategy and the second is the

opponent strategy. Each one of these possibilities contributes to the cumulative payo� with

b, 1, � and 0, respectively. If player x is being exploited, he can neutralize the exploiter by

changing (C,D) to (D,D) but keep other possible cooperation. It must be noted that if � = 0,

both (D,D) and (C,D) contribute with the same amount, so the player chooses randomly one

of them. In the usual game, where each player adopts the same strategy against all of his

opponents, although the imitation also decreases the exploiter payo�, it cannot be thought

of as a punishment act because the imitator is actually trying to improve his own bene�ts

by probably exploiting other cooperators. But in model A, when (C,D) is changed to (D,D),

just the exploiter is being punished, the other cooperation are not changed. So model A

incorporates into the replacement rule both imitation and punishment without costly mech-

anisms. It must be mentioned that we are not using punishment as another strategy, like

altruistic punishment [16]. There are only two basic strategies: cooperation and defection.

In the second replacement rule, model B, player x changes exactly the strategy he uses
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against the player he chose to imitate. This model is trivial but interesting, because since

two players reach mutual cooperation they remain forever and since an exploiter is punished

there is no chance of other exploitation and they will stay forever with mutual defection. In

the third replacement rule, model C, the tendency to punish exploiters is smoothed because

player x chooses randomly one of his confrontations and changes the strategy used in that

confrontation.

We made the simulations on the square lattice with linear size L = 100 and checked

that the same results are still valid for L = 200. First we measured the mean fraction

of cooperation (f

c

) at stationary state for di�erent values of the tendency for defection

b. The number of cooperation (n

c

) is taken to be the quantity of C strategies used in all

confrontations, so 0 � n

c

� 4N and f

c

= n

c

=(4N). The random initial con�guration is

characterized by 50% of cooperation. For each initial condition we discarded the transient

time needed to reach the stationary state, and then we made a time average for 1000 MCS

(Monte Carlo Steps). A second average is realized over 100 di�erent initial conditions. We

used 1 � b � 5 and � = 0:01. Fig. 1 shows the results for the three models and for

the usual game. Note that for model C and the usual game, defection is the dominating

strategy when b > b

c

. Note also that models A and B keep cooperation alive for every b.

It must be mentioned that it is possible to have some residues of defection in the case of

cooperation domination or some residues of cooperation in the case of defection domination.

This is due to the fact that the update rule prevents a change if the payo�s are the same.

This prevention enables the existence of some stable residual con�gurations. For model A

the fraction of cooperation for b = 2 is around f

c

= 0:9998. For model C the residues of

cooperation is around f

c

= 0:005 at the region b > b

c

.

Let's now analyze in more detail the model A. In the usual game, extensive analysis has

been done and the emergence of cooperators is attributed in part to the negative e�ect on

the cumulative payo� when an exploited individual copies a D strategy used by a successful

exploiter, decreasing the exploiter payo� [6, 19]. This also happens in model A, as can be

seen in Fig. 2, that depicts the typical behavior for short times. Note that when the quantity

of (D,D) is a maximum, the fraction of cooperation is a minimum and starts to increase.

Another reason in the usual game for the maintenance of cooperation is the formation

of cooperation clusters. This is again present in model A. Suppose we have a cluster as

in Fig. 3, where all the players adopt defection in all confrontation except for a cluster
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FIG. 1: Fraction of cooperation in the square lattice at the steady state for di�erent values of b.

It is shown the behavior of the usual game and the studied models A, B and C.
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FIG. 2: Fraction of interaction of type D�D and fraction of cooperation at short times for model

A in the square lattice . The defect tendency is b=1.1. Each MCS (Monte Carlo Step) corresponds

to a round in which every player play a game with all their neighbors.

of cooperation. One can see that for b > 1, the region inside the dashed square is stable

in the sense that it will never be invaded by a defection. Suppose some player on the

interface chooses to change his (C,D) confrontation. Since this confrontation furnishes the

worst contribution, it is only that confrontation that can be changed to (D,D). After that,

(D,D) is also the worst confrontation, and the D strategy cannot be copied to the interior

of the square. If b � 3 the cooperation in such con�guration cannot spread out, because
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FIG. 3: Cluster of cooperation of size S = 3 and the region of stability shown inside the dashed

square.

the exploitation of the immediately outside players give to each of them a total payo� of

b > 3, and players immediately inside have a payo� value of only 3. But if 1 < b < 3

the cooperation cluster can expand. Moreover a similar analysis applied to con�gurations

like the one depicted in Fig. 4 shows that there is always a stable region of cooperation,

irrespectively of the boundary and the width of the region of cooperation. For simplicity,

let's put � = 0 in cluster analysis and evaluate numerically the probability that a square

cluster of linear size S can take over a bigger square region of twice the original linear size.

For 4 � S � 10, with probability one the cluster expands. So the two mechanisms of

cluster of cooperation formation and the negative e�ect of the exploiter being imitated are

present. But the great di�erence of the model A is the possibility of neutralizing a defector

and keeping the old cooperation. The importance of this fact can be better illustrated in

a more general case. Suppose a big exploiter is introduced interacting with all individuals

of a population of cooperators. After a few rounds, some players adopt D strategy against

the big exploiter and still keep the cooperation with the other players. The exploitation will

be almost completely neutralized. No matter how great is the exploitation, model A always

prevents the invasion of defectors.

If b > 3, the strategies on the boundary of the stable region 
uctuate. By using a rate

equation approach we obtain an analytical expression for the fraction of cooperation � inside
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FIG. 4: Mutual cooperation con�gurations in model A prevent invasion by defections. Note that

no matter the boundary nor the region width, there is always a stable region inside the dashed

line.
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FIG. 5: Fraction of cooperation inside a square of linear size S = 6 when b > 3 for model A. The

continuous line represents the analytical expression and the circles the simulations data.

a square of size S:

� = 1�

1

S

+

�b +

q

b

2

+ 8(b� 2) + (S � 2)

(b� 2)S

2

: (1)

Fig. 5 shows that the simulation and the analytical expression for S = 6 agree very well.

Let's analyze the other models. The model B is a trivial one, because since a player

has updated one of his confrontation, this confrontation remains the same forever. Since
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in the random initial condition we have, in average, 50% of cooperation, there is at the

beginning, in average, 25% of each one of the four possible confrontations. So there is

an inferior bound for the fraction of cooperators, namely 25%. Since all confrontation are

initially equally probable, every player that has more than one (D,C) confrontation, will

have a bigger cumulative payo�. The players that are exploited by these exploiters will

replace the (C,D)confrontation by a (D,D) one. All these (C,D) confrontations will change

to (D,D) ones while this unbalanced exploitations are not neutralized. So the cooperation

that remain will be only those that were initially present in (C,C) confrontations, that is,

the fraction will be around 25% as it is shown in Fig. 1. Note that after the exploitations

are neutralized, they cannot be converted to mutual cooperation. This feature is in contrast

with model A, because if a (D,D) confrontation appears in model A, it can be changed to

a (C,C) one when both players x and y imitate at the same round other players that are

cooperating with them.

Model C does not support the same capability of survival for the cooperators, as can

be seen in Fig. 1. The mechanism of defection neutralization is smoothed, because if

there is a (C,D) confrontation, the D strategy can be copied into any confrontation and

the exploitation has a probability to remain alive. Let's analyze again the cluster shown

in Fig. 3. This cluster is no longer stable. If b < 2, the cluster will expand. But there

is no guarantee of stability. Suppose some player is reached by the expanding cooperation

cluster and changes all of his strategies to C but one is still kept with D. Suppose also that

this player is surrounded by cooperation. The cluster can go on expanding, but now this

D strategy can start a defection invasion from inside the cluster because it will give to that

player a bigger payo�. This does not happen in model A. The random replacement does not

provide the certainty of neutralizing an exploitation and still keeping cooperation with the

others that are cooperating

Further simulations show that if b � 1 the fraction of cooperation at steady state in

model A tends to the same value as that in model B. But this is expected, because if b is

huge, every (C,D) confrontation will give to the exploiter a huge advantage and every (C,D)

confrontation change to (D,D) one.

It must be mentioned that the steady state fraction of cooperation depends on the initial

con�guration. The parameter we used to vary the initial conditions is the probability p

of having a cooperation. For model A, as the cooperation survival depends on cluster
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formation, if p is small, there is no cluster of cooperation at the beginning, but if p > 0:4

and 1 < b < 3, the stationary value does not depend on the initial condition. When b > 3,

cooperation clusters no longer spread out and the stationary values strongly depends on the

initial con�guration of cooperation reinforcements. After discarding �nite size e�ect, model

C does not depend on initial conditions.

Let's now consider another interest point: the robustness of model A. So far we have

assumed that the players always judge correctly what is their worst confrontation. But

misjudgment is a relevant parameter in real behavior. Instead of always choosing the worst

confrontation, now the players can misjudge and choose a confrontation that does not give

the worst contribution to the payo�. For this we introduce a misjudgment probability (p

m

).

Let's state this point clearly. The individuals can update their strategies in every round.

For each individual update we introduce the possibility of a random replacement, given by

a misjudgment probability p

m

. By this de�nition, with probability 1� p

m

the replacement

follows the original model A and with probability p

m

follows model C. If p

m

= 0 and p

m

= 1

model A and model C are recovered, respectively. We say that model A is robust if the

fraction of cooperation in the case p

m

6= 0 still remain close to the fraction in the case

p

m

= 0 if we vary the p

m

values. We say that for some b value model A is more robust than

for another b value if the decreasing of the cooperation fraction is lower for the �rst b value.

The robustness analysis shows that there are three typical behaviors that depend on the

defector tendency. This de�nes three b regions: i) 1 � b < b

c

, ii) b

c

� b < 3 and iii) b > 3. In

the �rst region both models A and C exhibits cooperation. In the second and third region,

just model A exhibits cooperation. Note that the fraction of cooperation in the third region

is lower that in the second. We choose b = 1, b = 2, and b = 4 as representative values for

the three region. The simulational results are shown in Fig. 6. For b = 1 model A is indeed

robust: up to p

m

= 0:1 there is no decrease on the cooperation fraction. This means that if

N = 10

4

, even in the presence of 1000 misjudgments in every round, nothing happens to the

cooperations. For b = 2, model A does not change the fraction of cooperation for p

m

values

up to p

m

= 0:001. For b = 4 the fraction of cooperation reduces even for p

m

= 0:0001. Note

that for b > b

c

in model C the inherent randomness on the replacement reduces drastically

the cooperation. This b dependency is also present when some misjudgment introduces

randomness on the replacements of model A. So the results supports the conclusion that for

low defector tendency model A is robust although for large values of b the randomness has
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FIG. 6: Fraction of cooperation in the square lattice for model A at the steady state with di�erent

probabilities of misjudgments. It is shown the results using b = 1, b = 2 and b = 4.

a more eminent role reducing the cooperation fraction.

In order to have a more complete picture of the models with the possibilities of di�erent

strategies against di�erent opponents, let's study the one-dimensional lattice with periodic

boundary conditions (ring). The ring has N = 10

4

nodes and each node is linked only to

their two next neighbors. The fraction of cooperation is shown in Fig. 7. Note that for the

usual game there is no cooperation and model A is again able to sustain some cooperation.

Note that model C is also able to keep some cooperations alive even for huge defector

tendency, what does not happen in the square lattice. The in
uence of connectivity on the

cooperation fraction was already noted for the regular network with the usual game [9]. The

robustness analysis shows the same b dependency, although the ring is less robust than the

square lattice. Fig. 8 shows the robustness simulational results for the ring.

In summary, we have introduced the adoption of multiple strategies by the same player

which gives to the players the possibility of cooperating with some opponents and of defecting

with others. If the player wants to punish the exploiter but keep the old cooperations,

he can use simultaneous multiple strategies with the \replacing the worst confrontation"

replacement rule that model A provides. Model A incorporates a true punishment, because

the players do not take advantage in imitating the defector strategy, but just decrease the

payo� of who wants to be an exploiter. Model A also incorporates the reestablishment of

mutual cooperation by not keeping a frozen interaction. The usual game on the square
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FIG. 7: Fraction of cooperation in the ring. It is shown the behavior at the steady state of the

usual game and the studied models A and C for di�erent values of b.
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FIG. 8: Fraction of cooperation in the ring for model A at the steady state with di�erent proba-

bilities of misjudgments. It is shown the results using b = 1, b = 2 and b = 4.

lattice, with the same synchronous update rule, provide a smaller fraction of cooperations

for low b values and has a transition at a low b value when the cooperators die out. We have

shown that model A provides a mechanism in which cooperation dominates if 1 < b < 3.

Moreover even for huge defection tendency (b > 3) model A ensures cooperation survival.

For the ring topology model A also exhibited capability of sustaining cooperation. Finally

we showed that model A is robust against misjudgments, at least for low defector tendency,

for both lattices. We stress that this simple rule can be easily set in other game contexts
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what opens the possibility of further researches.
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