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Natural selection is often regarded as a result of severe competition. Defect seems beneficial

for a single individual in many cases. However, cooperation is observed in many levels of

biological systems ranging from single cells to animals, including human society. We have yet

known that in unstructured populations, evolution favors defectors over cooperators. On the

other hand, there have been much interest on evolutionary games1, 2 on structured population

and on graphs3–16. Structures of biological systems and societies of animals can be taken as

networks. They discover that network structures determine results of the games. Together

with the recent interest of complex networks17, 18, many researchers investigate real network

structures. Recently even economists study firms’ transactions structure19. Seminal work11

derives the condition of favoring cooperation for evolutionary games on networks, that is,

benefit divided by cost, b/c, exceeds average degree, 〈k〉. Although this condition has been

believed so far20, we find the condition is b/c > 〈knn〉 instead. 〈knn〉 is the mean nearest

neighbor degree. Our condition enables us to compare how network structure enhances

cooperation across different kinds of networks. Regular network favors most, scale free

network least. On ideal scale free networks, cooperation is unfeasible. We could say that

〈k〉 is the degree of itself, while 〈knn〉 is that of others. One of the most interesting points in
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network theory is that results depend not only on itself but also on others’. In evolutionary

games on network, we find the same characteristic.

There are only two kinds of agent: cooperator and defector. A cooperator pays a cost, c, for

each neighbor to receive a benefit, b. On the other hand, a defector pays no cost and its neighbor

does not receive any benefit. We also assume b > c. The payoff of the game can be described by

the following payoff matrix

⎛
⎜⎜⎜⎝

C D

C b − c −c

D b 0

⎞
⎟⎟⎟⎠ (1)

In deterministic game, D-D is the unique Nash equilibrium and will be taken. Although cooper-

ation by all the agents raises payoff of them, it is difficult to maintain cooperation because for a

single agent defect is always beneficial than cooperation. Thus cooperation will collapse. In an

unstructured population, where all the agents interact each other, defectors tend to have higher av-

erage gain than cooperators, so that cooperators would extinct as a result of natural selection. This

is true for deterministic replicator equation21, 22 and stochastic game of finite population23. In the

model of present paper, a network structure is introduced. Agent occupies each vertex of the net-

work. They play games only with the agents on adjacent vertices. If there are l neighbors around

the cooperator regardless of cooperators or defectors, he pays cost, lc. In addition, if j of them are

cooperators he is benefited jb from the cooperators. His fitness from the game is jb − lc. If the

defector has i cooperators around him, his fitness is ib. The game proceeds as follows. For each

time step, randomly chosen one agent on the network dies. Then adjacent agents compete for the
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empty vertex proportional to their fitness. The fitness of each agent is given by the constant term,

baseline fitness, plus the payoff of the game. When the payoff of the game is relatively smaller than

the baseline fitness, we call this as weak selection. The idea of the weak selection is that there are

many factors determining the whole fitness, the game in consideration is only one of the factors.

Reproduction of strategy can be taken as generic and cultural. The former is biological selection,

the latter is social phenomena.

The interest of the present paper comes from evolutionary biology and complex networks.

We need to explain a few things about complex networks. Degree, k, is the number of edges the

vertex has. If all the vertices have the same degree, the network is called regular network. If not,

it is called non-regular network. 〈k〉 is the mean degree. 〈knn〉 = 〈k2〉/〈k〉 is the nearest neighbor

mean degree. For instance, if you choose one vertex randomly, the mean degree of which is 〈k〉.

If you look at vertices linked to the randomly chosen one, the mean degree of which is not 〈k〉

but 〈knn〉. The fact that 〈k〉 �= 〈knn〉 plays an important role in complex network theory. In our

point of view many interesting results24, 25 comes from 〈k〉 �= 〈knn〉. The intuitive reason why they

differ is that vertices are likely to be linked to the vertices with larger degree. We need to explain

in what respect we can say a network favors cooperation. First we prepare a network where all the

vertices are occupied by only defectors, then we replace one of them by a single cooperator, then

we start the evolutionary games until either when all the vertices are occupied by only defectors or

only cooperators. We iterate the same games and have the probability that only cooperators occupy

the vertices. This probability is called fixation probability. If selection neither favors nor opposes

cooperation the probability is 1/N , N is the size of networks. If the fixation probability is larger
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than 1/N , we say that the network structure favors cooperation. Thus the condition b/c > 〈knn〉 is

like a threshold between network favors cooperation or opposes.

We derive the condition by mean field approximation. Mean field approximation is an useful

method which replaces something by mean value to obtain analytical solution, which has been

used especially in Physics. In mean field picture, a vertex is surrounded by the vertices with degree

〈knn〉 as illustrated in Fig.2. First we need to examine what happens on the vertex with 〈knn〉. In

mean field picture, as a vertex is surrounded by vertices 〈knn〉, so the vertex 〈knn〉 is surrounded by

the vertices 〈knn〉, which is illustrated in Fig.2 and called 〈knn〉 network hereafter. Next, we study

the fixation problem on the 〈knn〉 network. The point is that this network is regular network with

degree 〈knn〉. We are able to use the results of previous studies11, 12, that is, on regular network with

degree k the condition of favoring cooperation is b/c > k. Thus, on 〈knn〉 network the condition is

b/c > 〈knn〉. It is necessary for the whole network to be fixed that at least 〈knn〉 network is fixed.

Unless 〈knn〉 is fixed, the whole network is not fixed either. Thus that is the necessary condition.

However, we will see that it is not only necessary condition but also sufficient condition in mean

field picture. What happens if 〈knn〉 network is fixed? Remind the rule of the game, for each

time step one vertex is randomly chosen to die and the adjacent vertices compete for the empty

vertex proportional to their fitness. In mean field picture, any chosen vertex is surrounded by the

vertices with degree 〈knn〉. Because we assume that 〈knn〉 is already fixed, any vertex surrounding

randomly chosen vertex is a cooperator. Since the empty site will be taken by the adjacent players

and all of them are cooperators yet, the agent on the site has no choice but to be a cooperator. As

we have seen, we only have to study the fixation problem on the 〈knn〉 network in our mean field
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picture. The condition of favoring cooperation on the 〈knn〉 network is b/c > 〈knn〉. As we have

discussed, this is also the condition for the whole network. On regular networks 〈knn〉 is always

equal to k, thus the rule becomes b/c > k.

Because we have the condition b/c > 〈knn〉, we can compare how three kinds of represen-

tative networks: regular networks, random networks26, and scale free networks favor cooperation

most. Scale free network is the network that has degree distribution P (k) ∼ k−gamma. We need

to fix 〈k〉 across the networks. Even though 〈k〉 are the same, 〈knn〉 can be different. This fact

enables us to compare across different kinds of network. Among three networks, regular network

favors cooperation most and scale free network opposes most. On ideal scale free network which

has infinite number of vertices with 2 < γ ≤ 3, many real scale free network falls this parameter

range, cooperation is unfeasible because 〈knn〉 → ∞.

We check two points whether the condition b/c > 〈knn〉 holds well and which condition

b/c > 〈k〉 or b/c > 〈knn〉 is better by numerical simulation. Seen from Fig.4 the condition

b/c > 〈knn〉 holds well and is better than b/c > 〈k〉 which has been believed before. However,

〈knn〉 does not become approximate threshold for networks with too large deviation of degree

distribution like scale free network Fig.4 (e). Of course the rule, b/c > 〈k〉, does not hold well for

such a network either. Since it is derived by mean field approximation, it is not hard to understand

that in such a case it does not hold well. We need to make another step forward to understanding the

condition when the deviation of degree distribution is too large. Nevertheless, for all the networks

in Fig.4 if b/c > 〈knn〉 the networks favor cooperation and this condition is sufficient. On the
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other hand, b/c > 〈k〉 is not a sufficient condition. There are regions where b/c > 〈k〉 satisfies but

networks oppose cooperation.

Here is the conclusion. We derive the condition of favoring cooperation on networks. Al-

though it has been believed that b/c > 〈k〉 is the condition, we show that b/c > 〈knn〉 is the one.

We also show that among three kinds of network: regular network, random network and scale

free network, regular network favors cooperation most and scale free network least. On scale free

network with infinite number of vertices and 2 < γ ≤ 3 cooperation is unfeasible.

Acknowledgements We acknowledge Zbigniew Struzik for his interest and Naomichi Hatano for

helpful discussion.

Competing Interests The authors declare that they have no competing financial interests.

Correspondence Correspondence and requests for materials should be addressed to T.K.

(email: tomo.konno@gmail.com).

1. Hofbauer, J. & Sigmund, K. Evolutionary game dynamics. Bulletin-American Mathematical

Society 40, 479–520 (2003).

2. Nowak, M. & Sigmund, K. Evolutionary dynamics of biological games 303, 793–799 (2004).

3. Santos, F. & Pacheco, J. Scale-free networks provide a unifying framework for the emergence

of cooperation. Nature (London) Phys Rev Lett 95, 098104 (1992).

6



4. Nowak, M. A. & May, R. M. Evolutionary games and spatial chaos. Nature 359, 826–829

(1992). 10.1038/359826a0.

5. Killingback, T. & Doebeli, M. Spatial evolutionary game theory: Hawks and doves revisited.

Proc. R. Soc. Lond. B 263, 1135–1144 (1996).

6. Nakamaru, M., Matsuda, H. & Iwasa, Y. The evolution of cooperation in a lattice-structured

population. J. Theor. Biol. 184, 65–81 (1997). 10.1006/jtbi.1996.0243.

7. van Baalen, M. & Rand, D. A. The unit of selection in viscous populations and the evolution

of altruism. J. Theor. Biol. 193, 631–648 (1998). 10.1006/jtbi.1998.0730.

8. Mitteldorf, J. & Wilson, D. S. Population viscosity and the evolution of altruism. J. Theor.

Biol. 204, 481–496 (2000). 10.1006/jtbi.2000.2007.

9. Hauert, C. & Doebeli, M. Spatial structure often inhibits the evolution of cooperation in the

snowdrift game. Nature 428, 643–646 (2004). 10.1038/nature02360.

10. Ifti, M., Killingback, T. & Doebeli, M. Effects of neighbourhood size and connectiv-

ity on the spatial continuous prisoner’s dilemma. J. Theor. Biol. 231, 97–106 (2004).

10.1016/j.jtbi.2004.06.003.

11. Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. A. A simple rule for the evolution of

cooperation on graphs and social networks. Nature 441, 502–505 (2006).

12. Taylor, P. D., Day, T. & Wild, G. Evolution of cooperation in a finite homogeneous graph.

Nature 447, 469–472 (2007). 10.1038/nature05784.

7



13. Lieberman, E., Hauert, C. & Nowak, M. A. Evolutionary dynamics on graphs. Nature 433,

312–316 (2005). 10.1038/nature03204.

14. Szabo, G. & Vukov, J. Cooperation for volunteering and partially random partnership. Phys.

Rev. E 69, 036107 (2004). 10.1103/PhysRevE.69.036107.

15. Wilson, D. S., Pollock, G. B. & Dugatkin, L. A. Can altruism evolve in a purely viscous

population? Evol. Ecol. 6, 331–341 (1992).

16. Whitlock, M. Fixation probability and time in subdivided populations. Genetics 164, 767–779

(2003).

17. Newman, M. E. J. The structure and function of complex networks. SIAM Review 45 (2003).

18. Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Critical phenomena in complex networks.

Reviews of Modern Physics 80, 1275 (2008).

19. Konno, T. Network structure of japanese firms. hierarchy and degree correlation: Analysis

from 800,000 firms. Economics: The Open-Access, Open-Assessment E-Journal 2 (2008).

20. Nowak, M. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).

21. Taylor, P. D. & Jonker, L. Evolutionary stable strategies and game dynamics. Math. Biosci.

40, 145–156 (1978). 10.1016/0025-5564(78)90077-9.

22. Hofbauer, J. & Sigmund, K. Evolutionary games and population dynamics (1998).

23. Nowak, M. A., Sasaki, A., Taylor, C. & Fudenberg, D. Emergence of cooperation and evolu-

tionary stability in finite populations. Nature 428, 646–650 (2004). 10.1038/nature02414.

8



24. Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in scale-free networks. Physical

Review Letters 86, 3200 (2001).

25. Albert, R., Jeong, H. & Barabasi, A. Attack and error tolerance of complex networks. Nature

406, 378–382 (2000).

26. P.Erdos & A.Renyi. On random graphs. Publicationes Mathematicae 6, 290–297 (1959).

9



Figure 1 The rule of the game. All the vertices are occupied by individuals. An individ-

ual derives payoffs, P, from the game. The fitness is 1 − w + wP , where w 	 1 means

weak selection. w = 1 means strong selection. For each time step, randomly chosen

individual dies, then the empty vertex will be occupied by the neighbors in proportional to

their fitness. In the figure, the fitness of cooperators is FC = 2 − 2w + w(5b − 6c). The

fitness of defectors is FD = 2 − 2w + 3wb. The vertex will be occupied by a cooperator

with probability FC/(FC + FD).

Figure 2 Mean Field. (a) In mean field approximation, every vertex adjacent to any

vertex with arbitrary degree, k, is replaced by the vertex with degree 〈knn〉. (b) The vertex

with 〈knn〉 is also surrounded by the vertices with 〈knn〉.

Figure 3 Intuition for the rule. Suppose that all the vertices with 〈knn〉 are occupied

by cooperators as illustrated in (b). Because every vertex is surrounded by the vertices

with degree 〈knn〉 in mean field picture and they are already occupied by cooperators as

supposed, any vertex with arbitrary degree, k, is surrounded by cooperators. Remind

the rule of the game that an empty site will be occupied by the neighbors. Now, all

the neighbors of any vertex are cooperators in mean field picture, subsequently overall

network will be occupied by cooperators.

Figure 4 Numerical Simulations. N stands for the size of networks. y-axis means ratio

defined by the fixation probability of a neutral mutant, 1/N , divided by the fixation prob-

ability of cooperator. Dashed lines are ratio=1. If ratio is less than 1, the network favors
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cooperation. For each simulation, the value of b/c is (〈knn〉 − 〈k〉)t + 〈k〉. t is the control

parameter. t = 0 corresponds to b/c = 〈k〉, while t = 1 corresponds to 〈knn〉. x-axis

means t. For every simulation, after each 2N time steps we build new networks because

the fixation probability may be dependent on specific realization. The games are under

weak selection, w = 0.01. The values of 〈k〉 and 〈knn〉 are merely examples, they vary

across realizations. (a) This network is the mixture of vertices with degree 5, 6, 7, 8, 9,

and 10. The number of five kinds of vertices are the same. We iterated 400000 steps

for each. 〈k〉 = 7.5, 〈knn〉 = 7.9 (b)-(d) Random networks with 〈k〉 = 10, 12, 14. N=600,

600, 700. Iteration is 72000, 72000, and 84000. 〈knn〉 = 〈k〉 + 1 (e) Scale free network with

γ = 2.2 and N = 500. 〈k〉 = 3.7, 〈knn〉 = 6.6 From t = 1 to t = 0, iterations are 25000,

25000, 25000, 50000, 100000, and 150000.
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