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Division of the human zygote leads to the formation of the blastocyst containing human embryonic 

stem cells (hESC) that develop into the embryo.  Little is known about the physiological signals 

that direct hESC division and differentiation during early embryogenesis.  Although a number of 

growth factors, including the pregnancy-associated hormone human chorionic gonadotropin 

(hCG), are secreted by trophoblasts1-3 that lie adjacent to the embryoblast in the blastocyst, it is 

not known whether these growth factors directly signal the epiblast.  Here we show that hCG 

promotes the division of embryoblast-derived inner mass cells (hESC), and their differentiation 

during blastulation and neurulation.  Inhibition of LH/hCG receptor (LHCGR) signaling with P-

antisense oligonucleotides suppresses hESC proliferation. Similarly, hESC proliferation could be 

blocked using an antibody against the extracellular activation site of LHCGR, an effect that was 

reversed by treatment with hCG.  hCG treatment rapidly upregulated steroidogenic acute 

regulatory protein-mediated cholesterol transport and the synthesis of progesterone (P4), a 

neurogenic steroid4,5.  P4 treatment of hESC colonies induced neurulation as demonstrated by the 



expression of nestin and the formation of columnar neuroectodermal cells and their organization 

into neural tube-like rosettes.  Suppression of P4 signaling by withdrawing P4 or treating with the 

P4 receptor antagonist RU-486 inhibited the differentiation of hESC colonies into embryoid bodies 

(blastulation) and rosettes (neurulation).  These results explain why hESC default towards a 

neural stem cell fate in culture.  Collectively, our findings implicate trophoblastic hCG secretion 

and signaling via LHCGR on the adjacent embryoblast in the induction of hESC proliferation, 

and their differentiation into a blastocyst and neurula. This paracrine/juxtacrine signaling of 

extraembryonic tissues is the commencement of trophic support by trophoblastic (placental 

tissues) in the growth and development of the human embryo. 

 

Zygotic division into a blastocyst establishes the extra-embryonic tissues (trophoblast layer or outer 

cell mass) and hypoblast (extraembryonic endoderm) that support the embryonic epiblast (inner cell 

mass) early in embryogenesis.  Trophoblasts secrete an array of hormones1-3,6 including hCG during the 

migration of the blastocyst through the fallopian tube and its implantation into the endometrium.  The 

dramatic elevation in the production of hCG by trophoblasts at this early embryonic stage (from 5 to 

≥1000 mIU/mL in the maternal serum)6,7 signals both the corpus lutea and trophoblast2 to synthesize and 

secrete P4
8,9 which is required for the maintenance of the endometrium, blastocyst attachment and 

synctiotrophoblast proliferation into the endometrium10.   

Given the close spatial localization of the developing trophoblast layer to the epiblast, it is 

conceivable that trophoblast-associated hormones directly signal the growth and development of the 

epiblast.  Evidence supporting this concept includes our recent observations that, 1) hCG markedly 

increases hESC expression of the adhesion and neuritogenic protein amyloid-β precursor protein11, and 

2) P4 signaling is necessary for human blastulation3.  To examine the functionality of trophoblastic 

signaling to the epiblast, we examined if the LHCGR was expressed by pluripotent hESC.  Full-length 

mature LHCGR (92-kDa)6 was detected in hESC and expression was not altered upon differentiation 



into embryoid bodies (EBs), which resemble early post-implantation embryos (blastocyst)12, or into 

neuroectodermal rosettes, which consist of >90% columnar neural precursor cells (NPC) and are the in 

vitro equivalent of a rudimentary neural tube13 (Fig. 1a).  Decreased Oct-3/4 expression together with 

brightfield analysis indicated lineage commitment and loss of pluripotency during the differentiation of 

hESC colonies into rosettes. RT-PCR of RNA extracted from pluripotent hESC confirmed the presence 

of LHCGR message (data not shown).  The comparable level of LHCGR expression between the 

different cell lineages is suggestive of a basal requirement for LH/hCG signaling during these early 

stages of embryogenesis.   

hCG is mitogenic towards epithelial and endothelial cells of the endometrium and is a marker of 

carcinogenesis14.  Treatment of hESC with a physiologically relevant concentration of hCG (500 

mIU/mL) in growth factor-free TESR1 culture media resulted in a 3.3-fold increase in cell proliferation 

after 6 d (Fig. 1b), a response that did not vary with hCG concentration (5-50,000 mIU/mL; data not 

shown).  Surprisingly, a similar increase (3.7-fold) in hESC proliferation was observed in growth factor-

free TESR1 culture media, suggesting the autocrine production of hCG/LH or other mitogenic factors by 

hESC.  RT-PCR amplification of RNA extracted from pluripotent hESC using sequence specific primers 

confirmed the presence of both hCGβ isoform V and LHβ message (Fig. 1c).  While full length mature 

30-kDa LH protein (α-GSU + LHβ subunits) and other variants of LH (47-kDa and 60-kDa)15 could be 

detected by immunoblot analysis (Fig. 1d), hCG was not detectable (data not shown) as previously 

reported2, suggesting differential translational control of the expression of these gonadotropins.   

To examine the requirement for hCG/LH signaling in the proliferation of hESC in vitro, we treated 

hESC with P-antisense oligonucleotides against LHCGR.  P-antisense oligonucleotides significantly 

decreased hESC proliferation (48%) compared to sense oligonucleotide treated hESC (Fig. 2a).  To 

confirm that hESC production of LH or trophoblastic production of hCG promotes hESC proliferation, 

we treated hESC with increasing concentrations of an antibody against amino acids 15-38 of the 

extracellular activation site of LHCGR (Fig. 2b)16.  This antibody significantly reduced hESC 



proliferation in a dose-dependent fashion compared to 6 d untreated controls (Fig. 2c).  Addition of hCG 

to hESC treated with this blocking antibody reversed this effect, confirming the specificity of the 

antibody for the receptor and of hCG signaling for hESC proliferation.  The high binding affinities (Kd 

≈ 0.4-5.5 x 10-10 M) of hCG/LH for the human receptor17,18 indicates that the autocrine production of 

even low concentrations of these gonadotropins by hESC (or trophoblasts) is sufficient to signal hESC 

proliferation.  A low level of hCG/LH expression by hESC/trophoblasts also is consistent with the low 

binding capacity (~2.2 fmol/mg tissue) of hCG for LHCGR17. In this respect, knockdown of Oct4 

expression in hESC induces hCG and Gcm1 expression19 and indicates any small differentiation of 

hESC in our cultures may provide sufficient hCG for hESC proliferation.  Together, these results 

suggest the presence of a hCG/LH-dependent mechanism that signals embryonic growth.   

hCG functions to increase trophoblast and corpus luteal P4 production8,9. To examine if hCG induces 

steroidogenesis in hESC as in steroidogenic tissues, we examined the expression of steroid acute 

regulatory protein (StAR), a key rate-limiting step in the production of sex steroids in reproductive 

tissues.  hESC were found to express StAR mRNA and protein (37-kDa, 30-kDa and 20-kDa variants; 

Fig. 3a).  Since truncation of the 37-kDa to the 30/32-kDa variants of StAR is indicative of increased 

cholesterol transport across the mitochondrial membrane for steroidogenesis20, we treated hESC with 

hCG and measured P4 secretion into the media.  hCG (500 mIU/mL) treatment increased P4 secretion 

into the media 15-fold (Fig. 3b).  To understand the regulation of sex steroid synthesis by hESC, we 

treated hESC with increasing concentrations of gonadotropins (Fig. 3c).  LHCGR expression was 

suppressed by treatment with increasing hCG and LH concentrations (Fig. 3c).  Similarly, to determine 

whether gonadotropins regulate StAR expression and processing in hESC, as they do in the gonads21, 

hESC were treated with increasing concentrations of hCG.  The expression of the 37-, 30- and 20-kDa 

variants of StAR were dose-dependently suppressed by 6 d of treatment with increasing hCG 

concentration (Fig. 3d).  Importantly, P4 treatment decreased truncation of the 37-kDa StAR variant 

(increasing the 37:30-kDa ratio 83%; Fig 3e), indicating mechanisms at the level of both StAR 



expression and processing exist to regulate hESC steroidogenesis.  Increases in the expression of the 

mature variant (37-kDa) and decreases in the expression of the truncated (30- and 20-kDa) variants of 

StAR (Fig. 3a) with differentiation of hESC into EBs and rosettes is consistent with a decreased 

requirement for steroidogenesis in these more differentiated cell lineages.  Together, these results 

indicate negative feedback pathways exist for the regulation of hCG/LH signaling and cholesterol 

uptake for the synthesis of sex steroids in hESC and differentiating lineages.   

Increasing concentrations of hCG suppress the pluripotent marker Oct-3/4 (Fig. 3c), suggesting 

hCG, or steroid production initiated by hCG signaling, can direct lineage commitment.  To test the 

effects of sex steroids on hESC proliferation and differentiation, we treated hESC with E2, P4, and E2 + 

P4 and observed a significant decrease in cell proliferation by 29%, 16% and 23%, respectively, 

compared to untreated control (Fig. 4a).  These results were consistent with the slight decrease in cell 

proliferation observed following hCG treatment (Fig. 1b) that induced significant P4 secretion (Fig. 3d).  

A screen of germline markers indicated that P4, and to a lesser extent E2, increase the expression of 

nestin, an early marker of NPC formation, in hESC (Fig. 4b).  Interestingly, E2 ‘priming’ has been 

shown to be required for induction of P4 receptor (PR) expression in other tissues22. Thus, the increase in 

nestin expression with E2 treatment may reflect increased PR expression together with endogenous P4 

signaling, and explain the current requirement for serum priming of hESC colonies in the preparation of 

neuroectodermal rosettes.  Previous studies have demonstrated the importance of P4 and related steroids 

as neurotrophic agents that promote adult neurogenesis, neuronal survival and neuroprotection4,5,23.  

The induction of nestin expression by P4 reveals a pivotal function for this pregnancy hormone 

during ectoderm formation.  To confirm the requirement for P4 signaling in epiblast development, hESC 

colonies just prior to entering the EB stage were treated with or without the PR antagonist RU-48624.   

When compared to controls, colonies treated with RU-486 failed to form cystic structures (cavitation) 

and instead formed solid irregular spheres (Fig. 4c) that did not express nestin (data not shown).  We 

next examined the requirement for P4 signaling during neurulation.  hESC colonies grown into a pre-EB 



stage were treated with either P4, RU-486, P4 + RU-486, or neither.  In the presence of P4, control 

rosettes displayed a minimum of three rosette structures inside of the cavity (Fig. 4c).  Compared to 

controls, pre-EB’s treated without P4 or with RU-486 retained a spherical shape but failed to form 

rosettes with columnar neuroectodermal cells after 17 days in culture (Fig. 4c).  Morphological changes 

were more severe in the absence of P4 than with RU-486. That neuroectoderm failed to form was 

confirmed by the absence of nestin expression in RU-486 treated compared to P4 treated pre-EBs (Fig. 

4d). These results indicate the obligatory role of P4 signaling in gastrulation and neurulation during early 

embryogenesis.   

hCG/LH signaling via the LHCGR increases hESC proliferation, but also P4 synthesis that decreases 

cell proliferation and promotes differentiation.  At what point these functions bifurcate, and what other 

factors regulate hCG-induced proliferation versus hCG-induced P4 mediated differentiation (e.g. BMP 

signaling) remain to be determined.  Interestingly, hESCs default towards a primitive neural stem cell 

fate if maintained for any length of time in culture25.  Since hESC express gonadotropins (Fig. 1c), and 

hCG signaling promotes P4 production (Fig. 3d) which induces lineage commitment towards a 

neuroectodermal phenotype (Figs. 4b, c), we tested whether hCG might act to differentiate hESC toward 

a neuronal lineage.  hCG treatment induced nestin expression (205-kDa variant) in hESC (Fig. 4e), 

indicating endogenous gonadotropin production by hESC (Fig. 1) or trophoblastic cells2 may be 

sufficient for NPC formation, thereby explaining the extrinsic hormonal signals regulating the ‘default 

pathway’ of hESC differentiation into neuronal lineages25.    

These results suggest that trophoblastic hCG production adjacent to the embryoblast is required not 

only for trophoblast steroidogenesis and attachment to the uterine wall, but also for signaling normal 

growth and development of the epiblast.  While the structural importance of P4 and alloprogesterone has 

previously been recognized by its early synthesis (by at least day 13) within the developing rat central 

nervous system26, our results demonstrate an early (within the first 7 days) and absolute requirement for 

P4 during blastulation and neurulation as indicated by the findings that, 1) RU-486 prevents normal 



cavitation of hESC colonies and columnar neuroectodermal rosette formation, 2) RU-486 prevents 

nestin expression, 3) P4 induces nestin expression in hESC, 4) P4 withdrawal from pre-EBs inhibits 

neuroectodermal rosette formation, and 5) hCG upregulates StAR processing for cholesterol transport 

and P4 synthesis and secretion.  Thus, these results suggest that paracrine/juxtacrine signaling of hCG 

for mobilization of cholesterol for P4 production by the epiblast/synctiotrophoblast following conception 

is essential for blastulation and neurulation.  Conversely, suppression of P4 signaling at this time (e.g. 

with RU-486)27 will block these time-sensitive developmental processes. The requirement of P4 during 

cavitation processes indicates the structural influence of these molecular pathways on the developing 

embryo within the first 7 days, but also on the formation of the neural tube at around day 17-19, which 

will influence future neural connectivity.  Thus, there exists a critical molecular signaling link between 

trophoblastic (and/or maternal) hormone production and early embryonic growth and development. 
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FIGURE LEGENDS 

Figure 1. hESC, EBs and rosettes express LH/hCG ligands and receptor. (a) Pluripotent H9 hESC 

(passage 22–32; XX karyotype; also known as WA09, a National Institutes of Health registered line) 

were used to generate embryoid bodies (EB) and neural precursor cells (NPC) as previously 

described3,11,28and cell lysates were analyzed by immunoblot with (i) an affinity purified anti-human 

LH/hCG receptor polyclonal antibody generated against the N-terminal 15-38 amino acids (New 

England Peptides, GA, USA); (ii) a monoclonal antibody against the human POU5F1 transcription 

factor Oct-3/4 (C-10; against 1-134 amino acids of human Oct-4; Santa Cruz Biotechnologies, CA), and 

(iii) monoclonal antibodies against human C-11 β-actin (Santa Cruz, CA, USA) and human V-18 

GAPDH (Santa Cruz, CA, USA)11,3.  (b) hESC were cultured in growth factor free TESR1 media ± hCG 

(500mIU/mL) for 6 d and cell proliferation measured using the trypan blue assay. Results are expressed 

as mean ± SEM, n = 3 (*p<0.05, **p<0.005 compared to 6 d Control).  (c) Total RNA isolated from 

hESC was amplified by RT-PCR using sequence specific primers for LHβ and isoform V of hCGβ.  The 

expected LHβ band of 93 bp spanning exon 2 and 3 and 90 bp hCGβ of isoform V are shown.  The 

sequence of the amplified cDNA matched the genomic sequence (minus the intronic sequences) 

demonstrating that the amplified cDNA was from LHβ and hCGβ mRNA templates.  A molecular 

weight ladder is shown in the center. (d) Protein from cell lysates of hESC were analyzed by 

immunoblot using a polyclonal antibody generated against the entire β-subunit of the LH glycoprotein 

(Dr. Parlow, National Hormone and Peptide Program, Harbor-UCLA Medical Center, Torrance, CA, 

USA) as previously described15. 

  

Figure 2. Endogenously produced hCG signals via LH/hCG receptors for hESC proliferation.  (a) 

hESC were treated with lipofectamine (control), lipofectamine + LHCGR sense oligonucleotides or 

lipofectamine + LHCGR P-antisense oligonucleotides for 6 days and the cells then counted using the 

trypan blue method.  For experiments using oligomers with phosphorothioate bonds (antisense-P; 



Integrated DNA Technology, Coralville, IA), oligomers were added to media (240 µl) that had been 

preincubated with lipofectamine (4 ng/µl; Invitrogen Corporation, Carlsbad, CA) for 5 min. at room 

temperature.  This mixture was then incubated at room temperature for 20 min. prior to addition to cells.  

Antisense-P was used at a final concentration of 0.4 µM. LHCGR antisense-P: 5’-

TCCAGTTCAGAGTCCCATT TC-3’, 21nt, 49% G/C; Sense 5’-GAAATGG GACTCTGAACTGGA-

3. Results are expressed as mean ± SEM, n = 4; significant differences between groups are indicated by 

different letters, P < 0.05).  (b) Schematic of the LH/hCG receptor activation site and binding site of 

rabbit polyclonal antibody against amino acids 15-38 of the extracellular binding domain of LH/hCG 

receptor (New England Peptides, GA, USA).  (c) hESC grown in 6-well plates coated with MatrigelTM 

in mTeSR1 media were treated for 6 d with, i) hCG (500 mIU/mL; lane A; Ray Biotech Inc., GA, USA), 

ii) increasing concentrations of the affinity purified rabbit polyclonal antibody against amino acids 15-

38 of the extracellular binding domain of LH/hCG receptor (1:1000, 1:200, 1:100; lanes B, C, D, 

respectively), and iii) in combination (lanes E, F, G).  Cell number was counted. Results are expressed 

as mean ± SEM, n = 3 (*p<0.05, **p<0.005 compared to d 6 control).  

 

Figure 3. hCG induces P4 synthesis and secretion from hESC.  (a) Total RNA isolated from hESC 

was amplified by RT-PCR using 2 pairs of sequence specific primers for StAR.  The expected 404bp 

and 408bp cDNA fragments were detected. The sequence of the amplified cDNA matched the expected 

lengths of the StAR gene.  Equal amounts of protein from cell lysates of hESC, EBs and rosettes were 

analyzed by immunoblot with an anti-human StAR polyclonal antibody (Dr. Strauss, University of 

Pennsylvania29). Three bands were identified at 37-, 30-, and 20-kDa. (b) hESC were treated with hCG 

(500 mIU/mL) in TESR1 media each day for 6 d, the media collected and pooled each day (15 mL 

total), lyophilized and resuspended in 2 mL of TESR1 media for ELISA of P4 (Cayman Chemical 

Company, MI, USA). Results are expressed as µg P4/µg cellular protein (mean ± SEM, n = 3, t-test, 

*p<0.001).  (c)  Equal amounts of protein from cell lysates of hESC grown in mTeSR1 media and 



treated with LH (5, 10, and 100 mIU/mL; National Peptide Hormone Program, Harbor-UCLA, USA) or 

hCG (50, 500, and 5,000 mIU/mL; Ray Biotech Inc., GA, USA) for 6 d were analyzed by immunoblot 

with antibodies against LH/hCG receptor and Oct-3/4 expression as described in Fig. 1. (d) hESC 

cultured for 6 d in mTeSR1 media were treated with hCG (0, 5, 50, 500, 5,000, 50,000 mIU/mL) and 

equal amounts of protein from cell lysates analyzed by immunoblot for StAR as described above.  (e) 

hESC were treated with and without P4 (2 µM) and/or RU-486 (20 µM; Sigma Laboratories, St. Louis, 

MO) for 5 d.  The colonies were collected and equal amounts of protein from cell lysates were analyzed 

by immunoblot for StAR, β-actin and GAPDH as described earlier. 

 

Figure 4. P4 promotes hESC blastulation and neurulation. (a) hESC were grown in lithium free 

TESR1 media in the presence of E2 (10 nM), P4 (2 µM) or E2 (10 nM) + P4 (2 µM) for 6 d and cell 

proliferation quantitated using the trypan blue assay.  Results are expressed as mean ± SEM, n = 4 

(*p<0.05, **p<0.005 compared to 6 d control). (b)  Equal amounts of protein from cell lysates of hESC 

treated for 9 d as described above were analyzed by immunoblot using a monoclonal antibody against 

nestin (clone 10C2; Chemicon, CA, USA).  (c) EB formation: hESC were allowed to form colonies by 

culturing for 4 d on an MEF feeder layer, then were enzymatically lifted and the colonies placed into EB 

media (containing serum) in the absence (control) or presence of RU-486 (20 µM) and rocked gently for 

an additional 10 d to allow EB formation.  Structures were then assessed morphologically.  Rosette 

formation: hESC were allowed to form colonies by culturing for 4 d on an MEF feeder layer, colonies 

were then enzymatically lifted and placed into EB media (containing serum) and rocked gently for an 

additional 4 d.  Colonies were then placed in neural induction media with and without P4 (2 µM) or RU-

486 (20 µM) for an additional 11 days.  At 19 d the structures were analyzed morphologically, the 

structures collected and equal amounts of protein from cell lysates were analyzed for nestin (d) by 

immunoblot analysis. The relative binding affinity of RU-486 for the PR is twice that of P4
30, and is used 

at a dose of 200–600 mg for the termination of pregnancies (this equates to ~6–19 μM, equivalent to that 



used in our study (20 μM)24. (e) hESC were grown in mTeSR1 media and treated with 500 mIU/mL 

hCG for 8 days.  Cells were collected, protein content determined using the BCA assay, and equal 

amounts of protein run on SDS-PAGE and the immunoblot probed for human nestin.   
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