Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystallization of strongly interacting photons in a nonlinear optical fibre

Abstract

Understanding strongly correlated quantum systems is a central problem in many areas of physics. The collective behaviour of interacting particles gives rise to diverse fundamental phenomena such as confinement in quantum chromodynamics, electron fractionalization in the quantum Hall regime and phase transitions in unconventional superconductors and quantum magnets. Such systems typically involve massive particles, but optical photons can also interact with one another in a nonlinear medium. In practice, however, such interactions are often very weak. Here we describe a technique that enables the creation of a strongly correlated quantum gas of photons using one-dimensional optical systems with tight field confinement and coherent photon trapping techniques. The confinement enables the generation of large, tunable optical nonlinearities via the interaction of photons with a nearby cold atomic gas. In its extreme, we show that a quantum light field can undergo fermionization in such one-dimensional media, which can be probed via standard photon correlation measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of fields and atoms comprising the system.
Figure 2: Density–density correlation function g(2)(z,z′=0) for an expanding TG gas of photons with initial density profile nph(z)=n0(1−z2/z02)1/2.
Figure 3: Maximum interaction parameter γmax as functions of optical depth and single-atom cooperativity, optimized over the detuning Δ0.

Similar content being viewed by others

References

  1. Boyd, R. W. Nonlinear Optics (Academic, New York, 1992).

    Google Scholar 

  2. Haroche, S. & Raimond, J. M. Exploring the Quantum: Atoms, Cavities and Photons (Oxford Univ. Press, New York, 2006).

    Google Scholar 

  3. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    Google Scholar 

  4. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–675 (2005).

    Google Scholar 

  5. Auslaender, O. M. et al. Spin–charge separation and localization in one dimension. Science 308, 88–92 (2005).

    Google Scholar 

  6. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Google Scholar 

  7. Tonks, L. The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev. 50, 955–963 (1936).

    Google Scholar 

  8. Girardeau, M. Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1, 516–523 (1960).

    Google Scholar 

  9. Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional Tonks–Girardeau gas. Science 305, 1125–1128 (2004).

    Google Scholar 

  10. Paredes, B. et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004).

    Google Scholar 

  11. Hartmann, M. J., Brandão, F. G. S. L. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nature Phys. 2, 849–855 (2006).

    Google Scholar 

  12. Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. Nature Phys. 2, 856–861 (2006).

    Google Scholar 

  13. Angelakis, D. G., Santos, M. F. & Bose, S. Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev. A 76, 031805(R) (2007).

    Google Scholar 

  14. Na, N., Utsunomiya, S., Tian, L. & Yamamoto, Y. Strongly correlated photons in a two-dimensional array of photonic crystal microcavities. Phys. Rev. A 77, 031803(R) (2008).

    Google Scholar 

  15. Hartmann, M. J. & Plenio, M. B. Strong photon nonlinearities and photonic Mott insulators. Phys. Rev. Lett. 99, 103601 (2007).

    Google Scholar 

  16. Rossini, D. & Fazio, R. Mott-insulating and glassy phases of polaritons in 1D arrays of coupled cavities. Phys. Rev. Lett. 99, 186401 (2007).

    Google Scholar 

  17. Nayak, K. P. et al. Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence. Opt. Express 15, 5431–5438 (2007).

    Google Scholar 

  18. Ghosh, S., Sharping, J. E., Ouzounov, D. G. & Gaeta, A. L. Resonant optical interactions with molecules confined in photonic band-gap fibers. Phys. Rev. Lett. 94, 093902 (2005).

    Google Scholar 

  19. Knight, J. C. Photonic crystal fibers. Nature 424, 847–851 (2003).

    Google Scholar 

  20. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    Google Scholar 

  21. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    Google Scholar 

  22. Schmidt, H. & Imamoglu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).

    Google Scholar 

  23. Bajcsy, M., Zibrov, A. S. & Lukin, M. D. Stationary pulses of light in an atomic medium. Nature 426, 638–641 (2003).

    Google Scholar 

  24. Bajcsy, M, Andre, A., Zibrov, A. S. & Lukin, M. D. Nonlinear optics with stationary pulses of light. Phys. Rev. Lett. 94, 063902 (2005).

    Google Scholar 

  25. Lai, Y. & Haus, H. A. Quantum theory of solitons in optical fibers. II. Exact solution. Phys. Rev. A 40, 854–866 (1989).

    Google Scholar 

  26. Mazets, I. E. & Kurizki, G. How different are multiatom quantum solitons from mean-field solitons? Europhys. Lett. 76, 196–202 (2006).

    Google Scholar 

  27. Lieb, E. H. & Liniger, W. Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963).

    Google Scholar 

  28. Korepin, V. E., Bogoliubov, N. M. & Izergin, A. G. Quantum Inverse Scattering Method and Correlation Functions (Cambridge Univ. Press, Cambridge, 1993).

    Google Scholar 

  29. Caux, J.-S. & Calabrese, P. Dynamical density–density correlations in the one-dimensional Bose gas. Phys. Rev. A 74, 031605 (2006).

    Google Scholar 

  30. Caux, J.-S., Calabrese, P. & Slavnov, N. A. One-particle dynamical correlations in the one-dimensional Bose gas. J. Stat. Mech. P01008 (2007).

  31. Haldane, F. D. M. Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840–1843 (1981); erratum 48, 569 (1982).

  32. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

    Google Scholar 

  33. Friedel, J. Metallic alloys. Nuovo Cimento 7, 287–311 (1958).

    Google Scholar 

  34. Lenard, A. One-dimensional impenetrable bosons in thermal equilibrium. J. Math. Phys. 7, 1268–1272 (1966).

    Google Scholar 

  35. Cazalilla, M. A. Effect of suddenly turning on interactions in the Luttinger model. Phys. Rev. Lett. 97, 156403 (2006).

    Google Scholar 

  36. Polkovnikov, A. & Gritsev, V. Breakdown of the adiabatic limit in low-dimensional gapless systems. Nature Phys. 4, 477–481 (2008).

    Google Scholar 

  37. Rigol, M. & Muramatsu, A. Free expansion of impenetrable bosons on one-dimensional optical lattices. Mod. Phys. Lett. B 19, 861–881 (2005).

    Google Scholar 

  38. Minguzzi, A. & Gangardt, D. M. Exact coherent states of a harmonically confined Tonks–Girardeau gas. Phys. Rev. Lett. 94, 240404 (2005).

    Google Scholar 

  39. Castin, Y. & Dum, R. Bose–Einstein condensates in time dependent traps. Phys. Rev. Lett. 77, 5315–5319 (1996).

    Google Scholar 

  40. Kagan, Yu., Surkov, E. L. & Shlyapnikov, G. V. Evolution of a Bose-condensed gas under variations of the confining potential. Phys. Rev. A 54, R1753–R1756 (1996).

    Google Scholar 

  41. Dowling, J. P. Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope. Phys. Rev. A 57, 4736–4746 (1998).

    Google Scholar 

  42. Bouyer, P. & Kasevich, M. A. Heisenberg-limited spectroscopy with degenerate Bose–Einstein gases. Phys. Rev. A 56, R1083–R1086 (2002).

    Google Scholar 

  43. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Google Scholar 

  44. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Google Scholar 

  45. Schulz, H. J. in Mesoscopic Quantum Physics, Proc. Les Houches Summer School LXI (eds Akkermans, E., Montambaux, G., Pichard, J. & Zinn-Justin, J.) 533–603 (Elsevier, Amsterdam, 1995).

    Google Scholar 

  46. Hartmann, M. J., Brandão, F. G. S. L. & Plenio, M. B. A polaritonic two-component Bose–Hubbard model. New J. Phys. 10, 033011 (2008).

    Google Scholar 

  47. Mas˘alas, M. & Fleischhauer, M. Scattering of dark-state polaritons in optical lattices and quantum phase gates for photons. Phys. Rev. A 69, 061801(R) (2004).

    Google Scholar 

  48. Harris, S. E. Electromagnetically induced transparency with matched pulses. Phys. Rev. Lett. 70, 552–555 (1993).

    Google Scholar 

  49. Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, New York, 2004).

    Google Scholar 

  50. Slavnov, N. A. Nonequal-time current correlation function in a one-dimensional Bose gas. Theor. Math. Phys. 82, 273–282 (1990).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the NSF, Harvard–MIT CUA, DARPA, Air Force and Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Demler.

Supplementary information

Supplementary Information

Supplementary Information (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, D., Gritsev, V., Morigi, G. et al. Crystallization of strongly interacting photons in a nonlinear optical fibre. Nature Phys 4, 884–889 (2008). https://doi.org/10.1038/nphys1074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1074

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing