Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature
  • Published:

Optical microscopy aims deep

A new set of imaging techniques that take advantage of scattered light may soon lead to key advances in biomedical optics, providing access to depths well beyond what is currently possible with ballistic light.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depth penetration versus spatial resolution for some of the most widespread biomedical imaging techniques.
Figure 2: Principle of wavefront shaping in disordered media.

References

  1. Helmchen, F. & Denk, W. Nat. Methods 2, 932–940 (2005).

    Article  Google Scholar 

  2. Fenno, L., Yizhar, O. & Deisseroth, K. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  Google Scholar 

  3. Schermelleh, L., Heintzmann, R. & Leonhardt, H. J. Cell Biol. 190, 165–175 (2010).

    Article  Google Scholar 

  4. Ji, N., Milkie, D. E. & Betzig, E. Nat. Methods 7, 141–147 (2010).

    Article  Google Scholar 

  5. Ntziachristos, V. Nat. Methods 7, 603–614 (2010).

    Article  Google Scholar 

  6. Chung, K. et al. Nature 497, 332–337 (2013).

    Article  ADS  Google Scholar 

  7. Wang, L. V. & Hu, S. Science 335, 1458–1462 (2012).

    Article  ADS  Google Scholar 

  8. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Nat. Photon. 6, 283–292 (2012).

    Article  ADS  Google Scholar 

  9. Horstmeyer, R., Ruan, H. & Yang, C. Nat. Photon. 9, 563–571 (2015).

    Article  ADS  Google Scholar 

  10. Laforest, T. et al. A 4000 Hz CMOS image sensor with in-pixel processing for light measurement and modulation. In New Circuits and Systems (NEWCAS) IEEE 11th Int. Conf. 1–4 (IEEE, 2013).

    Google Scholar 

  11. Simandoux, O. et al. Appl. Phys. Lett. 106, 094102 (2015).

    Article  ADS  Google Scholar 

  12. de Aguiar, H. B., Gigan, S. & Brasselet, S. Preprint at https://arxiv.org/abs/1511.02347 (2015).

  13. Judkewitz, B., Horstmeyer, R., Vellekoop, I. M., Papadopoulos, I. N. & Yang, C. Nat. Phys. 11, 684–689 (2015).

    Article  Google Scholar 

  14. Pégard, N. C. et al. Optica 3, 517–524 (2016).

    Article  ADS  Google Scholar 

  15. Bertolotti, J. et al. Nature 491, 232–234 (2012).

    Article  ADS  Google Scholar 

  16. Park, J. H., Sun, W. & Cui, M. Proc. Natl Acad. Sci. USA 112, 9236–9241 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Gigan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gigan, S. Optical microscopy aims deep. Nature Photon 11, 14–16 (2017). https://doi.org/10.1038/nphoton.2016.257

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing