Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Measurement of collective dynamical mass of Dirac fermions in graphene

Abstract

Individual electrons in graphene behave as massless quasiparticles1,2,3,4,5,6,7,8. Unexpectedly, it is inferred from plasmonic investigations9,10,11,12 that electrons in graphene must exhibit a non-zero mass when collectively excited. The inertial acceleration of the electron collective mass is essential to explain the behaviour of plasmons in this material, and may be directly measured by accelerating it with a time-varying voltage and quantifying the phase delay of the resulting current. This voltage–current phase relation would manifest as a kinetic inductance, representing the reluctance of the collective mass to accelerate. However, at optical (infrared) frequencies, phase measurements of current are generally difficult, and, at microwave frequencies, the inertial phase delay has been buried under electron scattering13,14,15. Therefore, to date, the collective mass in graphene has defied unequivocal measurement. Here, we directly and precisely measure the kinetic inductance, and therefore the collective mass, by combining device engineering that reduces electron scattering and sensitive microwave phase measurements. Specifically, the encapsulation of graphene between hexagonal boron nitride layers16, one-dimensional edge contacts17 and a proximate top gate configured as microwave ground18,19 together enable the inertial phase delay to be resolved from the electron scattering. Beside its fundamental importance, the kinetic inductance is found to be orders of magnitude larger than the magnetic inductance, which may be utilized to miniaturize radiofrequency integrated circuits. Moreover, its bias dependency heralds a solid-state voltage-controlled inductor to complement the prevalent voltage-controlled capacitor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Collective electrodynamics of graphene electrons.
Figure 2: Device description and d.c. measurements.
Figure 3: Microwave s-parameter measurements.
Figure 4: Extracted graphene kinetic inductance and collective electron mass.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  2. Zhang, Y., Tan, Y-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  3. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  4. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  5. Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

    Article  CAS  Google Scholar 

  6. Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    Article  CAS  Google Scholar 

  7. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  CAS  Google Scholar 

  8. Yeung, K. Y. M. et al. Far-infrared graphene plasmonic crystals for plasmonic band engineering. Nano Lett. 14, 2479–2484 (2014).

    Article  CAS  Google Scholar 

  9. Hwang, E. H. & Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

    Article  Google Scholar 

  10. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    Article  CAS  Google Scholar 

  11. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    Article  CAS  Google Scholar 

  12. Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012).

    Article  CAS  Google Scholar 

  13. Deligeorgis, G. et al. Microwave propagation in graphene. Appl. Phys. Lett. 95, 073107 (2009).

    Article  Google Scholar 

  14. Lee, H-J., Kim, E., Yook, J-G. & Jung, J. Intrinsic characteristics of transmission line of graphenes at microwave frequencies. Appl. Phys. Lett. 100, 223102 (2012).

    Article  Google Scholar 

  15. Jeon, D-Y. et al. Radio-frequency electrical characteristics of single layer graphene. Jpn. J. Appl. Phys. 48, 091601 (2009).

    Article  Google Scholar 

  16. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  17. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  18. Andress, W. F. et al. Ultra-subwavelength two-dimensional plasmonic circuits. Nano Lett. 12, 2272–2277 (2012).

    Article  CAS  Google Scholar 

  19. Yeung, K. Y. M. et al. Two-path solid-state interferometry using ultra-subwavelength two-dimensional plasmonic waves. Appl. Phys. Lett. 102, 021104 (2013).

    Article  Google Scholar 

  20. Abedinpour, S. H. et al. Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets. Phys. Rev. B 84, 045429 (2011).

    Article  Google Scholar 

  21. Burke, P. J., Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. High frequency conductivity of the high-mobility two-dimensional electron gas. Appl. Phys. Lett. 76, 745–747 (2000).

    Article  CAS  Google Scholar 

  22. Rana, F. Graphene terahertz plasmon oscillators. IEEE Trans. Nanotechnol. 7, 91–99 (2008).

    Article  Google Scholar 

  23. Yoon, H., Yeung, K. Y. M., Umansky, V. & Ham, D. A Newtonian approach to extraordinarily strong negative refraction. Nature 488, 65–69 (2012).

    Article  CAS  Google Scholar 

  24. Xia, J., Chen, F., Li, J. & Tao, N. Measurement of the quantum capacitance of graphene. Nature Nanotech. 4, 505–509 (2009).

    Article  CAS  Google Scholar 

  25. Chauhan, J. & Guo, J. Assessment of high-frequency performance limits of graphene field-effect transistors. Nano Res. 4, 571–579 (2011).

    Article  CAS  Google Scholar 

  26. Yoon, H., Yeung, K. Y. M., Kim, P. & Ham, D. Plasmonics with two-dimensional conductors. Phil. Trans. R. Soc. Lond. A 372, 20130104 (2014).

    Article  Google Scholar 

  27. Jang, C. et al. Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering. Phys. Rev. Lett. 101, 146805 (2008).

    Article  CAS  Google Scholar 

  28. Hwang, C. et al. Fermi velocity engineering in graphene by substrate modification. Sci. Rep. 2, 590 (2012).

    Article  Google Scholar 

  29. Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nature Phys. 7, 701–704 (2011).

    Article  CAS  Google Scholar 

  30. Marks, R. B. A multiline method of network analyzer calibration. IEEE Trans. Microw. Theory Tech. 39, 1205–1215 (1991).

    Article  Google Scholar 

  31. Ohba, N., Miwa, K., Nagasako, N. & Fukumoto, A. First-principles study on structural, dielectric, and dynamical properties for three BN polytypes. Phys. Rev. B 63, 115207 (2001).

    Article  Google Scholar 

  32. Maex, K. et al. Low dielectric constant materials for microelectronics. J. Appl. Phys. 93, 8793–8841 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.H. and H.Y. acknowledge support from the Air Force Office of Scientific Research (contract no. FA9550-13-1-0211), from the Office of Naval Research (contract no. N00014-13-1-0806), from the National Science Foundation (NSF; contract no. DMR-1231319), from the Samsung Advanced Institute of Technology and its Global Research Opportunity programme (contract no. A18960). P.K. acknowledges support from the Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2012M3A7B4049966). J.H. and L.W. acknowledge support from the NSF (contract no. DMR-1124894) and the Office of Naval Research (award no. N000141310662). C.F. acknowledges support of the Columbia Optics and Quantum Electronics IGERT under NSF grant DGE-1069420. N.T. acknowledges support from the Netherlands Organisation for Scientific Research Device fabrication was performed in part at the Center for Nanoscale Systems at Harvard University.

Author information

Authors and Affiliations

Authors

Contributions

H.Y., P.K. and D.H. conceived the project. K.W. and T.T. fabricated the h-BN. H.Y., C.F., L.W., N.T. and J.H. fabricated the stacked layers of h-BN, graphene and h-BN. H.Y. designed the device. H.Y. and C.F. fabricated the device. H.Y. performed the experiments. H.Y., P.K. and D.H. analysed the data. H.Y., P.K. and D.H. wrote the paper. All authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Philip Kim or Donhee Ham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 3563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, H., Forsythe, C., Wang, L. et al. Measurement of collective dynamical mass of Dirac fermions in graphene. Nature Nanotech 9, 594–599 (2014). https://doi.org/10.1038/nnano.2014.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing