Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Presynaptic long-term depression at a central glutamatergic synapse: a role for CaMKII

Abstract

CaMKII is a calcium-activated kinase that is abundant in neurons and has been strongly implicated in memory and learning. Here we show that low-frequency stimulation of glutamatergic afferents in hippocampal slices from juvenile domestic chicks results in long-term depression of synaptic transmission. This reduction does not require activation of NMDA or metabotropic glutamate receptors and does not require a rise in postsynaptic calcium. However, buffering presynaptic calcium prevents the reduction of the excitatory postsynaptic potential or current that is induced by low-frequency stimulation. In addition, application of the calmodulin antagonist calmidazolium, or the specific CaMKII antagonist KN-93, completely blocks long-term depression. These findings demonstrate a newly discovered form of long-term synaptic depression in the avian hippocampus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Low-frequency stimulation (LFS) induces long-term depression (LTD) of synaptic transmission.
Figure 2: NMDA-receptor activation is not required for LTD.
Figure 3: A rise in postsynaptic calcium is not required for LTD.
Figure 4: BAPTA buffers calcium in the dendritic tree.
Figure 5: Activation of metabotropic glutamate receptors is not required for LTD induction.
Figure 6: Induction of LTD requires a sustained rise in presynaptic calcium.
Figure 7: Induction of LTD requires activation of presynaptic calcium/calmodulin-dependent protein kinase II.

Similar content being viewed by others

References

  1. Rose, S. P. How chicks make memories: the cellular cascade from c-fos to dendritic remodelling. Trends Neurosci. 14, 390–397 (1991).

    Article  CAS  Google Scholar 

  2. Sherry, D. F., Jacobs, L. F. & Gaulin, S. J. C. Spatial memory and adaptive specialization of the hippocampus Trends Neurosci. 15, 298–303 (1992).

    Article  CAS  Google Scholar 

  3. Rostas, J. A. P. in Neural and Behavioral Plasticity: The Use of the Domestic Chick as a Model (ed. Andrew, R. J.) 177–211 (Oxford University Press, New York, 1991).

    Book  Google Scholar 

  4. Rostas, J. A. P. & Dunkley, P. R. Multiple forms and distribution of calcium/calmodulin stimulated protein kinase II in brain. J. Neurochem. 59, 1191–1202 (1992).

    Article  CAS  Google Scholar 

  5. Braun, A. P. & Schulman, H. The multifunctional calcium/calmodulin dependent protein kinase: from form to function. Annu. Rev. Physiol. 57, 417–445 (1995).

    Article  CAS  Google Scholar 

  6. Mayford, M., Wang, J., Kandel, E. R. & O'dell, T. J. CaMPKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP Cell 81, 891–904 (1995).

    Article  CAS  Google Scholar 

  7. Miller, S. G. & Kennedy, M. B. Relulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell 44, 861–870 (1986).

    Article  CAS  Google Scholar 

  8. Lisman, J. E. A mechanism for memory storage insensitive to molecular turnover: A bistable autophosphorylating kinase. Proc. Natl Acad. Sci. USA 82, 3055–3057 (1985).

    Article  CAS  Google Scholar 

  9. Lledo, P.-M. L. et al. Calcium/calmodulin-dependent protein kinase II and long term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl Acad. Sci. USA 92, 11175–11179 (1995).

    Article  CAS  Google Scholar 

  10. Wang, J.-H. & Kelly, P.T. Postsynaptic injection of Ca2+/CaM induces synaptic potentiation requiring CaMPKII and PKC activity. Neuron 15, 443–452 (1995).

    Article  Google Scholar 

  11. Malenka, R. C. et al. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 340, 554–557 (1989).

    Article  CAS  Google Scholar 

  12. Malinow, R., Schulman, H. & Tsien, R. W. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245, 862–866 (1989).

    Article  CAS  Google Scholar 

  13. Silva, A. J., Stevens, C. F., Tonegawa, S. & Wang, Y. Deficient hippocampal long-term potentiation in α-calcium-calmodulin kinase II mutant mice. Science 257, 201–206 (1992).

    Article  CAS  Google Scholar 

  14. Llinas, R., Gruner, J. A., Sugimori, M., McGuiness, T. L. & Greengard, P. Regulation by synapsin I and Ca2+-calmodulin-dependent protein kinase II of transmitter release in squid giant synapse. J. Physiol (Lond.) 436, 257–282 (1991).

    Article  CAS  Google Scholar 

  15. Llinas, R. R., McGuinness, T. L., Leonard, C. S., Sugimori, M. & Greengard, P. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release. Proc. Natl Acad. Sci. USA 82, 3035–3039 (1985).

    Article  CAS  Google Scholar 

  16. Nichols, R. A., Sihra, T. S., Czernik, A. J., Nairn, A. C. & Greengard, P. Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature 343, 647–651 (1990).

    Article  CAS  Google Scholar 

  17. Margrie, T. W., Rostas, J. A. P. & Sah, P. Long term potentiation of synaptic transmission in the avian hippocampus. J. Neurosci. 18, 1207–1216 (1998).

    Article  CAS  Google Scholar 

  18. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305, 719–721 (1983).

    Article  CAS  Google Scholar 

  19. Kostyuk, P. G., Krishtal, D. A. & Pidoplichko, V. I. Effects of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells. Nature 257, 691–693 (1975).

    Article  CAS  Google Scholar 

  20. Kay, A. R., Miles, R. & Wong, R. K. S. Intracellular fluoride alters the kinetic properties of calcium currents facilitating the investigation of synaptic events in hippocampal neurons. J. Neurosci. 6, 2915–2920 (1986).

    Article  CAS  Google Scholar 

  21. Wiseman, A. in Handbook of Experimental Pharmacology (ed. Smith, F. A.) 48–97 (Springer-Verlag, New York, 1970).

    Google Scholar 

  22. Sternweis, P. C. & Gilman, A. G. Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc. Natl Acad. Sci. USA 79, 4888–4891 (1982).

    Article  CAS  Google Scholar 

  23. Yokoi, M. et al. Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science 273, 645–647 (1996).

    Article  CAS  Google Scholar 

  24. Weisskopf, M. G., Castillo, P. E., Zalutsky, R. A. & Nicoll, R. A. Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265, 1878–1882 (1994).

    Article  CAS  Google Scholar 

  25. Kobayashi, K., Manabe, T. & Takahashi, T. Presynaptic long-term depression at the hippocampal mossy fiber-CA3 synapse. Science 273, 648–650 (1996).

    Article  CAS  Google Scholar 

  26. Klee, C.B. in Calmodulin (eds Cohen, P. & Klee, C.B.) (Elsevier, Ameterdam, 1988).

    Google Scholar 

  27. Weinberger, R. P. & Rostas, J. A. Developmental changes in protein phosphorylation in chicken forebrain. II. Calmodulin stimulated phosphorylation. Brain Res. 471, 259–272 (1988).

    Article  CAS  Google Scholar 

  28. Sumi, M. et al. The newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells. Biochem. Biophys. Res. Commun. 181, 968–975 (1991).

    Article  CAS  Google Scholar 

  29. Mamiya, N. et al. Inhibition of acid secretion in gastric parietal cells by the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-93. Biochem. Biophys. Res. Commun. 195, 608–615 (1993).

    Article  CAS  Google Scholar 

  30. Sudhof, T. C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375, 645–653 (1995).

    Article  CAS  Google Scholar 

  31. Pompoli, M. Synaptotagmin is endogenously phosphorylated by Ca2+/calmodulin kinase II in synaptic vesicles. FEBS Lett. 317, 85–88 (1992).

    Article  Google Scholar 

  32. Yokoyama, C. T., Sheng, Z.-H. & Catterall, W. A. Phosphorylation of the synaptic protein interaction site in N-type calcium channels inhibits interaction with SNARE proteins. J. Neurosci. 17, 6929–6938 (1997).

    Article  CAS  Google Scholar 

  33. Chapman, P. F., Frenguelli, B. G., Smith, A., Chen, C.-M. & Silva, A. J. The α-Ca2+/calmodulin kinase II: A bidirectional modulator of presynaptic plasticity. Neuron 14, 591–597 (1995).

    Article  CAS  Google Scholar 

  34. Meyer, T., Hanson, P. I., Stryer, L. & Schulman, H. Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science 256, 1199–1202 (1992).

    Article  CAS  Google Scholar 

  35. Sheng, Z. H., Rettig, J., Cook, T. & Catterall, W. A. Calcium-dependent interactions of N-type calcium channels with the synaptic core complex. Nature 379, 451–454 (1996).

    Article  CAS  Google Scholar 

  36. Sheng, Z. H., Retting, J., Takahashi, M. & Catterall, W. A. Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13, 1303–1313 (1994).

    Article  CAS  Google Scholar 

  37. Mochida, S., Sheng, Z.-H., Baker, C., Kobayashi, H. & Catterall, W. A. Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels. Neuron 17, 781–788 (1996).

    Article  CAS  Google Scholar 

  38. Rettig, J. et al. Alteration of Ca2+ dependence of neurotransmitter release by disruption of Ca2+ channel/syntaxin interaction. J. Neurosci. 17, 6647–6656 (1997).

    Article  CAS  Google Scholar 

  39. Blanton, M. G., Lo Turco, J. J. & Kriegstein, A. R. Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex J. Neurosci. Methods 30, 203–210 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Health and Medical Research Council of Australia (J.R. and P.S.). P.S. is a Charles and Sylvia Viertel Senior Medical Research Fellow. T.M. was supported by an Australian Postgraduate Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Sah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margrie, T., Rostas, J. & Sah, P. Presynaptic long-term depression at a central glutamatergic synapse: a role for CaMKII. Nat Neurosci 1, 378–383 (1998). https://doi.org/10.1038/1589

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1589

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing