Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A null mutation in TGF-α leads to a reduction in midbrain dopaminergic neurons in the substantia nigra

Abstract

Transforming growth factor (TGF)-α is neurotrophic for midbrain dopaminergic neurons in vitro. Here I investigated whether a null mutation in the TGF-α gene affects the normal development or survival of dopaminergic neurons in either the substantial nigra (SN) or the ventral tegmental area (VTA). The SN of TGF-α knockout mice contained 50% fewer dopaminergic neurons than the control SN, but VTA neuron number was unchanged. In addition, the overall volume of the dorsal striatum was reduced by 20%. Newborn mice showed a similar decrease in the number of SN dopaminergic neurons, suggesting that TGF-α is unlikely to regulate developmental neuron death. These studies indicate that TGF-α is required for the normal proliferation or differentiation of a select population of dopaminergic neurons within the SN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TH-immunoreactive cell counts.
Figure 2: TH immunocytochemistry of the striatum.
Figure 3: TH-immunoreactive cell counts in the SN of postnatal day 1 TGF-α+/+ and TGF-α–/– mice.

Similar content being viewed by others

References

  1. Ernfors, P., Lee, K.-F. & Jaenisch, R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368, 147–150 (1994).

    Article  CAS  Google Scholar 

  2. Jones, K. R., Fariñas, I., Backus, C. & Reichardt, L. F. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76, 989–999 (1994).

    Article  CAS  Google Scholar 

  3. Moore, M. W. et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 382, 76–79 (1996).

    Article  CAS  Google Scholar 

  4. Sánchez, M. P., Silos-Santiago, I., Frisén, J., Lira, S. A. & Barbacid, M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382, 70–73 (1996).

    Article  Google Scholar 

  5. Pichel, J. G. et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382, 73–76 (1996).

    Article  CAS  Google Scholar 

  6. Luetteke, N. C. et al. TGF-α deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell 73, 263–278 (1993).

    Article  CAS  Google Scholar 

  7. Mann, G. B. et al. Mice with a null mutation of the TGF-α gene have abnormal skin architecture, wavy hair and curly whiskers and often develop corneal inflammation. Cell 73, 249–261 (1993).

    Article  CAS  Google Scholar 

  8. West, M. J. & Gundersen, H. J. G. Unbiased stereological estimation of the number of neurons in the human hippocampus. J. Comp. Neurol. 296, 1–22 (1990).

    Article  CAS  Google Scholar 

  9. West, M. J. New stereological methods for counting neurons. Neurobiol. Aging 14, 275–285 (1993).

    Article  CAS  Google Scholar 

  10. Lieb, K. et al. Pre- and postnatal development of dopaminergic neuron numbers in the male and female mouse midbrain. Dev. Brain Res. 94, 37–43 (1996).

    Article  CAS  Google Scholar 

  11. Graybiel, A. M., Ohta, K. & Roffler-Tarlov, S. Patterns of cell and fiber vulnerability in the mesostriatal system of the mutant mouse weaver. I. Gradients and compartments. J. Neurosci. 10, 720–733 (1990).

    Article  CAS  Google Scholar 

  12. Gundersen, H. J. G. et al. The new stereological tools: Disector, Fractionator, Nucleator and point sampled intercepts and their use in pathological research and diagnosis. Acta Pathol. Microbiol. Immunol. Scand. 96, 857–881 (1988).

    Article  CAS  Google Scholar 

  13. Bayer, S. A. Neurogenesis in the rat neostriatum. Int. J. Dev. Neurosci. 2, 163–175 (1984).

    Article  CAS  Google Scholar 

  14. van der Kooy, D. & Fishell, G. Neuronal birthdate underlies the development of striatal compartments. Brain Res. 401, 155–161 (1987).

    Article  CAS  Google Scholar 

  15. Schambra, U. B. et al. Ontogeny of D1A and D2 dopamine receptor subtypes in rat brain using in situ hybridization and receptor binding. Neuroscience 62, 65–85 (1994).

    Article  CAS  Google Scholar 

  16. Weickert, C. S. & Blum, M. Striatal TGF-α: Postnatal developmental expression and evidence for a role in the proliferation of subependymal cells. Dev. Brain Res. 86, 203–216 (1995).

    Article  CAS  Google Scholar 

  17. Seroogy, K. B., Gall, C. M., Lee, D. C. & Kornblum, H. I. Proliferative zones of postnatal rat brain express epidermal growth factor receptor mRNA. Brain Res. 670, 157–164 (1995).

    Article  CAS  Google Scholar 

  18. Kornblum, H. I. et al. Prenatal ontogeny of the epidermal growth factor receptor and its ligand, transforming growth factor alpha, in the rat brain. J. Comp. Neurol. 380, 243–261 (1997).

    Article  CAS  Google Scholar 

  19. Kuhn, H. G., Winkler, J., Kempermann, G., Thal, L. J. & Gage, F. H. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829 (1997).

    Article  CAS  Google Scholar 

  20. Kornblum, H. I., Gall, C. M., Sergoogy, K. B. & Lauterborn, J. C. A subpopulation of striatal GABAergic neurons expresses the epidermal growth factor receptor. Neuroscience 69, 1025–1029 (1995).

    Article  CAS  Google Scholar 

  21. Oo, T. F. & Burke, R. E. The time course of developmental cell death in phenotypically defined dopaminergic neurons of the substantia nigra. Dev. Brain Res. 98, 191–196 (1997).

    Article  CAS  Google Scholar 

  22. Bayer, S. A. et al. Selective vulnerability of late-generated dopaminergic neurons of the substantia nigra in weaver mutant mice. Proc. Natl Acad. Sci. USA 92, 9137–9140 (1995).

    Article  CAS  Google Scholar 

  23. Mytilineou, C., Park, T. & Shen, J. Epidermal growth factor-induced survival and proliferation of neuronal precursor cells from embryonic rat mesencephalon. Neurosci. Lett. 135, 62–66 (1992).

    Article  CAS  Google Scholar 

  24. Bouvier, M. M. & Mytilineou, C. Basic fibroblast growth factor increases division and delays differentiation of dopamine precursors in vitro. J. Neurosci. 15, 7141–7149 (1995).

    Article  CAS  Google Scholar 

  25. Bloom, F. E., Young, W. G., Nimchinsky, E. A., Hof, P. R. & Morrison, J. H. in Neuroinformatics - An Overview of the Human Brain Project (eds Koslow, S. H. & Huerta, M. F.) 83–123 (Lawrence Erlbaum, Mahwah, 1997).

    Google Scholar 

Download references

Acknowledgements

I would like to thank John Morrison and members of his laboratory for support and discussions concerning the stereological methods used in this study, Peter Rapp for comments on the manuscript, and Susan Lasky and Jeremy Kay for technical support. This work was supported by NIH grant AG08538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariann Blum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, M. A null mutation in TGF-α leads to a reduction in midbrain dopaminergic neurons in the substantia nigra. Nat Neurosci 1, 374–377 (1998). https://doi.org/10.1038/1584

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1584

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing