Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Subcellular connectivity underlies pathway-specific signaling in the nucleus accumbens

Abstract

We found that medium spiny neurons (MSNs) in both the direct and indirect pathways of the mouse nucleus accumbens (NAc) receive inputs from the cortex, thalamus and hippocampus. However, hippocampal inputs were much weaker onto indirect MSNs, where they contacted small spines located in the distal dendrites. This selective targeting means that these inputs must be gated by subthreshold depolarization to trigger action potentials and influence NAc output.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential activation of direct and indirect MSNs.
Figure 2: Hippocampal inputs make unique subcellular connections.
Figure 3: Subcellular targeting strongly affects hippocampal efficacy.

Similar content being viewed by others

References

  1. Russo, S.J. et al. Trends Neurosci. 33, 267–276 (2010).

    Article  CAS  Google Scholar 

  2. Sesack, S.R. & Grace, A.A. Neuropsychopharmacology 35, 27–47 (2010).

    Article  Google Scholar 

  3. Stuber, G.D. et al. Nature 475, 377–380 (2011).

    Article  CAS  Google Scholar 

  4. Gerfen, C.R. et al. Science 250, 1429–1432 (1990).

    Article  CAS  Google Scholar 

  5. Hikida, T., Kimura, K., Wada, N., Funabiki, K. & Nakanishi, S. Neuron 66, 896–907 (2010).

    Article  CAS  Google Scholar 

  6. Kravitz, A.V., Tye, L.D. & Kreitzer, A.C. Nat. Neurosci. 15, 816–818 (2012).

    Article  CAS  Google Scholar 

  7. Lobo, M.K. et al. Science 330, 385–390 (2010).

    Article  CAS  Google Scholar 

  8. Finch, D.M. Hippocampus 6, 495–512 (1996).

    Article  CAS  Google Scholar 

  9. French, S.J. & Totterdell, S. J. Comp. Neurol. 446, 151–165 (2002).

    Article  Google Scholar 

  10. Goto, Y. & Grace, A.A. Nat. Neurosci. 8, 805–812 (2005).

    Article  CAS  Google Scholar 

  11. O'Donnell, P. & Grace, A.A. J Neurosci 15, 3622–3639 (1995).

    Article  CAS  Google Scholar 

  12. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  13. Albin, R.L., Young, A.B. & Penney, J.B. Trends Neurosci. 12, 366–375 (1989).

    Article  CAS  Google Scholar 

  14. London, M. & Häusser, M. Annu. Rev. Neurosci. 28, 503–532 (2005).

    Article  CAS  Google Scholar 

  15. Groenewegen, H.J., Wright, C.I., Beijer, A.V. & Voorn, P. Ann. NY Acad. Sci. 877, 49–63 (1999).

    Article  CAS  Google Scholar 

  16. Chen, X., Leischner, U., Rochefort, N.L., Nelken, I. & Konnerth, A. Nature 475, 501–505 (2011).

    Article  CAS  Google Scholar 

  17. Little, J.P. & Carter, A.G. J. Neurosci. 32, 12808–12819 (2012).

    Article  CAS  Google Scholar 

  18. Jaffe, D.B. & Carnevale, N.T. J. Neurophysiol. 82, 3268–3285 (1999).

    Article  CAS  Google Scholar 

  19. Plotkin, J.L., Day, M. & Surmeier, D.J. Nat. Neurosci. 14, 881–888 (2011).

    Article  CAS  Google Scholar 

  20. Belujon, P. & Grace, A.A. J. Neurosci. 28, 9797–9805 (2008).

    Article  CAS  Google Scholar 

  21. Shuen, J.A., Chen, M., Gloss, B. & Calakos, N. J. Neurosci. 28, 2681–2685 (2008).

    Article  CAS  Google Scholar 

  22. Gong, S. et al. Nature 425, 917–925 (2003).

    Article  CAS  Google Scholar 

  23. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Nat. Neurosci. 10, 663–668 (2007).

    Article  CAS  Google Scholar 

  24. Franklin, K.B.J. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates, 3rd edn. (Academic Press, 2008).

  25. Yasuda, R. et al. Sci. STKE 2004, pl5 (2004).

    PubMed  Google Scholar 

  26. Chalifoux, J.R. & Carter, A.G. J. Neurosci. 31, 4221–4232 (2011).

    Article  CAS  Google Scholar 

  27. Carter, A.G. & Sabatini, B.L. Neuron 44, 483–493 (2004).

    Article  CAS  Google Scholar 

  28. Rodriguez, A., Ehlenberger, D.B., Hof, P.R. & Wearne, S.L. Nat. Protoc. 1, 2152–2161 (2006).

    Article  CAS  Google Scholar 

  29. Dayan, P. & Abbot, L.F. Theoretical Neuroscience: Computational and Mathematical Modeling (MIT Press, 2001).

  30. Carter, A.G. & Regehr, W.G. Nat. Neurosci. 5, 1309–1318 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Carter laboratory, M. Farrant, B. Sabatini and R. Tsien for helpful discussions and comments on the manuscript. This work was supported by the Whitehall Foundation, Dana Foundation and McKnight Foundation (A.G.C.). A.F.M. is a Sir Henry Wellcome Postdoctoral Fellow.

Author information

Authors and Affiliations

Authors

Contributions

A.F.M. and A.G.C. designed the experiments. A.F.M. performed experiments and analyzed the data. J.P.L. performed computer simulations. J.M.C. performed stereotaxic injections and confocal microscopy. A.F.M. and A.G.C. wrote the paper.

Corresponding author

Correspondence to Adam G Carter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 3372 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacAskill, A., Little, J., Cassel, J. et al. Subcellular connectivity underlies pathway-specific signaling in the nucleus accumbens. Nat Neurosci 15, 1624–1626 (2012). https://doi.org/10.1038/nn.3254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing