Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Porous materials

Designed and then realized

Simulation determined the crystal energy landscape of a set of molecular crystals, predicting ultrahigh surface area solids with high methane storage. These were then synthesized, showing the potential of computational structure-property mapping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two of the eight molecular building blocks chosen for forming porous molecular crystals.
Figure 2: Energy-storage-function maps and molecular crystal structures.

References

  1. Maddox, J. Nature 335, 201 (1988).

    Article  Google Scholar 

  2. Pulido, A. et al. Nature 543, 657–664 (2017).

    Article  CAS  Google Scholar 

  3. Holst, J. R. & Cooper, A. I. Adv. Mater. 22, 5212–5216 (2010).

    Article  CAS  Google Scholar 

  4. Mastalerz, M. & Oppel, I. M. Angew. Chem. Int. Ed. 51, 5252–5255 (2012).

    Article  CAS  Google Scholar 

  5. Price, S. L. Chem. Soc. Rev. 43, 2098–2111 (2014).

    Article  CAS  Google Scholar 

  6. Cruz-Cabeza, A. J., Reutzel-Edens, S. M. & Bernstein, J. Chem. Soc. Rev. 44, 8619–8635 (2015).

    Article  CAS  Google Scholar 

  7. Censi, R. & Di Martino, P. Molecules 20, 18759–18776 (2015).

    Article  CAS  Google Scholar 

  8. Zhou, J., Kye, Y.-S. & Harbison, G. S. J. Am. Chem. Soc. 126, 8392–8393 (2004).

    Article  CAS  Google Scholar 

  9. Reilly, A. M. et al. Acta Cryst. B 72, 439–459 (2016).

    Article  CAS  Google Scholar 

  10. Gomez-Bombarelli, R. et al. Nat. Mater. 15, 1120–1127 (2016).

    Article  CAS  Google Scholar 

  11. Raccuglia, P. et al. Nature 533, 73–76 (2016).

    Article  CAS  Google Scholar 

  12. Xue, D. et al. Nat. Commun. 7, 11241 (2016).

    Article  CAS  Google Scholar 

  13. Faber, F. A., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Phys. Rev. Lett. 117, 135502.

  14. Le, T. C. & Winkler, D. A. Chem. Rev. 116, 6107–6132 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. O. Beran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beran, G. Designed and then realized. Nature Mater 16, 602–604 (2017). https://doi.org/10.1038/nmat4913

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4913

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing