Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multimodal plasmonics in fused colloidal networks

Abstract

Harnessing the optical properties of noble metals down to the nanometre scale is a key step towards fast and low-dissipative information processing. At the 10-nm length scale, metal crystallinity and patterning as well as probing of surface plasmon properties must be controlled with a challenging high level of precision. Here, we demonstrate that ultimate lateral confinement and delocalization of surface plasmon modes are simultaneously achieved in extended self-assembled networks comprising linear chains of partially fused gold nanoparticles. The spectral and spatial distributions of the surface plasmon modes associated with the colloidal superstructures are evidenced by performing monochromated electron energy-loss spectroscopy with a nanometre-sized electron probe. We prepare the metallic bead strings by electron-beam-induced interparticle fusion of nanoparticle networks. The fused superstructures retain the native morphology and crystallinity but develop very low-energy surface plasmon modes that are capable of supporting long-range and spectrally tunable propagation in nanoscale waveguides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial and spectral characterization of plasmon-mediated electron energy loss in the vicinity of a fused Au nanoparticle chain.
Figure 2: Numerical simulation of EELS spectra of plasmonic nanoparticle chains.
Figure 3: Extreme confinement of the 2.4 eV plasmon mode in complex PNNs.
Figure 4: Mapping of low-energy plasmon modes in complex PNNs.

Similar content being viewed by others

References

  1. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  2. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  CAS  Google Scholar 

  3. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J. Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    Article  CAS  Google Scholar 

  4. Ditlbacher, H. et al. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005).

    Article  Google Scholar 

  5. Ouyang, F., Batson, P. E. & Isaacson, M. Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys. Rev. B 46, 15421–15425 (1992).

    Article  CAS  Google Scholar 

  6. Tan, S. F. et al. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343, 1496–1499 (2014).

    Article  CAS  Google Scholar 

  7. Rossouw, D. & Botton, G. A. Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding. Phys. Rev. Lett. 110, 066801 (2013).

    Article  Google Scholar 

  8. Gu, L. et al. Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets. Phys. Rev. B 83, 195433 (2011).

    Article  Google Scholar 

  9. Viarbitskaya, S. et al. Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms. Nature Mater. 12, 426–432 (2013).

    Article  CAS  Google Scholar 

  10. Bosman, M. et al. Surface plasmon damping quantified with an electron nanoprobe. Sci. Rep. 3, 1312 (2013).

    Article  Google Scholar 

  11. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    Article  CAS  Google Scholar 

  12. Halas, N. J., Lal, S., Chang, W. S., Link, S. & Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011).

    Article  CAS  Google Scholar 

  13. Chang, W-S. et al. Low absorption losses of strongly coupled surface plasmons in nanoparticle assemblies. Proc. Natl Acad. Sci. USA 108, 19879–19884 (2011).

    Article  CAS  Google Scholar 

  14. Lin, S., Li, M., Dujardin, E., Girard, C. & Mann, S. One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks. Adv. Mater. 17, 2553–2559 (2005).

    Article  CAS  Google Scholar 

  15. Barrow, S. J., Funston, A. M., Gomez, D. E., Davis, T. J. & Mulvaney, P. Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer. Nano Lett. 11, 4180–4187 (2011).

    Article  CAS  Google Scholar 

  16. Cheng, W. L. et al. Free-standing nanoparticle superlattice sheets controlled by DNA. Nature Mater. 8, 519–525 (2009).

    Article  CAS  Google Scholar 

  17. Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010).

    Article  CAS  Google Scholar 

  18. Henzie, J., Andrews, S. C., Ling, X. Y., Li, Z. Y. & Yang, P. D. Oriented assembly of polyhedral plasmonic nanoparticle clusters. Proc. Natl Acad. Sci. USA 110, 6640–6645 (2013).

    Article  CAS  Google Scholar 

  19. Duan, H., Fernandez-Dominguez, A. I., Bosman, M., Maier, S. A. & Yang, J. K. W. Nanoplasmonics: Classical down to the nanometer scale. Nano Lett. 12, 1683–1689 (2012).

    Article  CAS  Google Scholar 

  20. Alber, I. et al. Multipole surface plasmon resonances in conductively coupled metal nanowire dimers. ACS Nano 6, 9711–9717 (2012).

    Article  CAS  Google Scholar 

  21. Girard, C., Dujardin, E., Marty, R., Arbouet, A. & Colas des Francs, G. Manipulating and squeezing the photon local density of states with plasmonic nanoparticle networks. Phys. Rev. B 81, 153412 (2010).

    Article  Google Scholar 

  22. Batson, P. E. Surface plasmon coupling in clusters of small spheres. Phys. Rev. Lett. 49, 936–940 (1982).

    Article  CAS  Google Scholar 

  23. Ugarte, D., Colliex, C. & Trebbia, P. Surface-plasmon and interface-plasmon modes on small semiconducting spheres. Phys. Rev. B 45, 4332–4343 (1992).

    Article  CAS  Google Scholar 

  24. Bosman, M., Keast, V. J., Watanabe, M., Maaroof, A. I. & Cortie, M. B. Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007).

    Article  Google Scholar 

  25. Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nature Phys. 3, 348–353 (2007).

    Article  CAS  Google Scholar 

  26. Schmidt, F. P. et al. Dark plasmonic breathing modes in silver nanodisks. Nano Lett. 12, 5780–5783 (2012).

    Article  CAS  Google Scholar 

  27. Wei, H., Wang, Z., Tian, X., Kall, M. & Xu, H. Cascaded logic gates in nanophotonic plasmon networks. Nature Commun. 2, 387 (2011).

    Article  Google Scholar 

  28. Xu, S. Y. et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Small 1, 1221–1229 (2005).

    Article  CAS  Google Scholar 

  29. Garnett, E. C. et al. Self-limited plasmonic welding of silver nanowire junctions. Nature Mater. 11, 241–249 (2012).

    Article  CAS  Google Scholar 

  30. Bosman, M. & Keast, V. J. Optimizing EELS acquisition. Ultramicroscopy 108, 837–846 (2008).

    Article  CAS  Google Scholar 

  31. Imura, K., Nagahara, T. & Okamoto, H. Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J. Phys. Chem. B 109, 13214–13220 (2005).

    Article  CAS  Google Scholar 

  32. De Abajo, F. J. G. & Kociak, M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008).

    Article  Google Scholar 

  33. Link, S., Mohamed, M. B. & El-Sayed, M. A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103, 3073–3077 (1999).

    Article  CAS  Google Scholar 

  34. Colas des Francs, G. et al. Fluorescence relaxation in the near-field of a mesoscopic metallic particle: Distance dependence and role of plasmon modes. Opt. Express 16, 17654–17666 (2008).

    Article  CAS  Google Scholar 

  35. Michaelis, J., Hettich, C., Mlynek, J. & Sandoghdar, V. Optical microscopy using a single-molecule light source. Nature 405, 325–328 (2000).

    Article  CAS  Google Scholar 

  36. Pyayt, A. L., Wiley, B., Xia, Y. N., Chen, A. & Dalton, L. Integration of photonic and silver nanowire plasmonic waveguides. Nature Nanotech. 3, 660–665 (2008).

    Article  CAS  Google Scholar 

  37. Bharadwaj, P., Bouhelier, A. & Novotny, L. Electrical excitation of surface plasmons. Phys. Rev. Lett. 106, 226802 (2011).

    Article  Google Scholar 

  38. Lutz, T. et al. Molecular orbital gates for plasmon excitation. Nano Lett. 13, 2846–2850 (2013).

    Article  CAS  Google Scholar 

  39. Jaegeler-Hoheisel, T. et al. Plasmonic shaping in gold nanoparticle three-dimensional assemblies. J. Phys. Chem. C 117, 23126–23132 (2013).

    Article  Google Scholar 

  40. Eliseeva, S. V. & Bunzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189–227 (2010).

    Article  CAS  Google Scholar 

  41. Toninelli, C. et al. Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature. Opt. Express 18, 6577–6582 (2010).

    Article  CAS  Google Scholar 

  42. Brar, V. W., Jang, M. S., Sherrott, M., Lopez, J. J. & Atwater, H. A. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 13, 2541–2547 (2013).

    Article  CAS  Google Scholar 

  43. Yan, H. G. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photonics 7, 394–399 (2013).

    Article  CAS  Google Scholar 

  44. Sanchot, A. et al. Plasmonic nanoparticle networks for light and heat concentration. ACS Nano 6, 3434–3440 (2012).

    Article  CAS  Google Scholar 

  45. Scholl, J. A., Garcia-Etxarri, A., Koh, A. L. & Dionne, J. A. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13, 564–569 (2013).

    Article  CAS  Google Scholar 

  46. Ciraci, C. et al. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072–1074 (2012).

    Article  CAS  Google Scholar 

  47. Chen, C., Bobisch, C. A. & Ho, W. Visualization of Fermi’s Golden Rule through imaging of light emission from atomic silver chains. Science 325, 981–985 (2009).

    Article  CAS  Google Scholar 

  48. Li, M., Johnson, S., Guo, H. T., Dujardin, E. & Mann, S. A generalized mechanism for ligand-induced dipolar assembly of plasmonic gold nanoparticle chain networks. Adv. Funct. Mater. 21, 851–859 (2011).

    Article  CAS  Google Scholar 

  49. Martin, O. J. F., Girard, C. & Dereux, A. Generalized field propagator for electromagnetic scattering and light confinement. Phys. Rev. Lett. 74, 526–529 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Mlayah and A. Arbouet for continuous and fruitful discussions. This work was supported by the European Research Council (ERC; contract number ERC–2007-StG Nr 203872 COMOSYEL), and the massively parallel computing center CALMIP in Toulouse. A.T. thanks the LabEx project NEXT (Programme Investissements d’Avenir, contract ANR-10-LABX-0037-NEXT) for a travel grant to IMRE. The authors thank M. Nunez for technical assistance in TEM imaging.

Author information

Authors and Affiliations

Authors

Contributions

E.D., M.B., C.G. and S.M. conceived the experiments. K.L.G. and M.L. synthesized the nanoparticles and A.T. and M.L. prepared PNN suspension and TEM samples. M.B. performed and processed EELS experiments. C.G. and A.T. developed the model and implemented the simulation codes. A.T., M.B., C.G. and E.D. performed data and simulation analysis and prepared the figures. All co-authors contributed to the writing of the article.

Corresponding authors

Correspondence to Michel Bosman or Erik Dujardin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5699 kb)

Supplementary Information

Supplementary Movie 1 (AVI 24957 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teulle, A., Bosman, M., Girard, C. et al. Multimodal plasmonics in fused colloidal networks. Nature Mater 14, 87–94 (2015). https://doi.org/10.1038/nmat4114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing