Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A window on the future of spintronics

Despite low transition temperatures, ferromagnetism in diluted magnetic semiconductors has been essential in exploring new ideas and concepts in spintronics, some of which have been successfully transferred to metallic ferromagnets.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electric control of ferromagnetic phase in ferromagnetic semiconductors.
Figure 2: With electric fields, the carrier concentration can be tuned to populate carriers differently among the spin–orbit states, resulting in a change in the magnetic anisotropy, which in turn changes the direction of magnetization M indicated by an angle φ (left panel).
Figure 3: Magnetic domain-wall creep is a motion of the domain wall induced by spin-polarized current or by magnetic field through a disordered potential landscape.

References

  1. Dietl, T. Nature Mater. 9, 965–974 (2010).

    Article  CAS  Google Scholar 

  2. Ohno, H. et al. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  3. Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, H. Science 301, 943–945 (2003).

    Article  CAS  Google Scholar 

  4. Chiba, D. et al. Nature 455, 515–518 (2008).

    Article  CAS  Google Scholar 

  5. Weisheit, M. et al. Science 315, 349–351 (2007).

    Article  CAS  Google Scholar 

  6. Maruyama, T. et al. Nature Nanotech. 4, 158–161 (2009).

    Article  CAS  Google Scholar 

  7. Gamble, S. J. et al. Phys. Rev. Lett. 102, 217201 (2009).

    Article  CAS  Google Scholar 

  8. Butler, W. H., Zhang, X. G., Schulthess, T. C. & MacLaren, J. M. Phys. Rev. B 63, 054416 (2001).

    Article  Google Scholar 

  9. Mathon, J. & Umerski, A. Phys. Rev. B 63, 220403 (2001).

    Article  Google Scholar 

  10. Parkin, S. S. P. et al. Nature Mater. 3, 862–867 (2004).

    Article  CAS  Google Scholar 

  11. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Nature Mater. 3, 868–871 (2004).

    Article  CAS  Google Scholar 

  12. Ikeda, S. et al. Nature Mater. 9, 721–724 (2010).

    Article  CAS  Google Scholar 

  13. Endo, M., Kanai, S., Ikeda, S., Matsukura, F. & Ohno, H. Appl. Phys. Lett. 96, 212503 (2010).

    Article  Google Scholar 

  14. Duan, C.-G. et al. Phys. Rev. Lett. 101, 137204 (2008).

    Article  Google Scholar 

  15. Nakamura, K. et al. Phys. Rev. Lett. 102, 187201 (2009).

    Article  Google Scholar 

  16. Tsujikawa, M. & Oda, T. Phys. Rev. Lett. 102, 247203 (2009).

    Article  Google Scholar 

  17. Chiba, D., Nakatani, Y., Matsukura, F. & Ohno, H. Appl. Phys. Lett. 96, 192506 (2010).

    Article  Google Scholar 

  18. Shiota, Y. et al. Appl. Phys. Exp. 2, 063001 (2009).

    Article  Google Scholar 

  19. Zhou, T. J. et al. Appl. Phys. Lett. 96, 012506 (2010).

    Article  Google Scholar 

  20. Giamarchi, T., Kolton, A. B. & Rosso, A. Lect. Notes Phys. 688, 91 (2006).

    Article  Google Scholar 

  21. Parkin, S. S. P., Hayashi, M. & Thomas, L. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  22. Suzuki, T., Fukami, S., Nagahara, K., Ohshima, N. & Ishiwata, N. IEEE Trans. Magn. 45, 3776–3779 (2009).

    Article  CAS  Google Scholar 

  23. Tatara, G. & Kohno, H. Phys. Rev. Lett. 92, 086601 (2004).

    Article  Google Scholar 

  24. Ralph, D. C. & Stiles, M. D. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    Article  CAS  Google Scholar 

  25. Yamanouchi, M. et al. Science 317, 1726–1729 (2007).

    Article  CAS  Google Scholar 

  26. Moore, T. A. et al. Appl. Phys. Lett. 93, 262504 (2008).

    Article  Google Scholar 

  27. Lee, J. C. et al. Preprint at http://arXiv.org/abs/1006.1216 (2010).

  28. Gould, C. et al. Phys. Rev. Lett. 93, 117203 (2004).

    Article  CAS  Google Scholar 

  29. Moser, J. et al. Phys. Rev. Lett. 99, 056601 (2007).

    Article  CAS  Google Scholar 

  30. Jaworski, C. M. et al. Preprint at http://arXiv.org/abs/1007.1364 (2010).

  31. Liu, Q., Liu, C. X., Xu, C., Qi, X. L. & Zhang, S. C. Phys. Rev. Lett. 102, 156603 (2009).

    Article  Google Scholar 

  32. Liu, C. Hughes, T. L., Qi, X. L., Wang, K. & Zhang, S. C. Phys. Rev. Lett. 100, 236601 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

I thank Fumihiro Matsukura, Michihiko Yamanouchi and Tomasz Dietl for discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, H. A window on the future of spintronics. Nature Mater 9, 952–954 (2010). https://doi.org/10.1038/nmat2913

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2913

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing