Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-performance transparent inorganic–organic hybrid thin-film n-type transistors

A Corrigendum to this article was published on 01 April 2007

Abstract

High-performance thin-film transistors (TFTs) that can be fabricated at low temperature and are mechanically flexible, optically transparent and compatible with diverse substrate materials are of great current interest. To function at low biases to minimize power consumption, such devices must also contain a high-mobility semiconductor and/or a high-capacitance gate dielectric. Here we report transparent inorganic–organic hybrid n-type TFTs fabricated at room temperature by combining In2O3 thin films grown by ion-assisted deposition, with nanoscale organic dielectrics self-assembled in a solution-phase process. Such TFTs combine the advantages of a high-mobility transparent inorganic semiconductor with an ultrathin high-capacitance/low-leakage organic gate dielectric. The resulting, completely transparent TFTs exhibit excellent operating characteristics near 1.0 V with large field-effect mobilities of >120 cm2 V−1 s−1, drain–source current on/off modulation ratio (Ion/Ioff)105, near-zero threshold voltages and sub-threshold gate voltage swings of 90 mV per decade. The results suggest new strategies for achieving ‘invisible’ optoelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inorganic-only and inorganic–organic hybrid TFTs fabricated using In2O3 thin films as the n-channel semiconductor; L (channel length)=50/100 μm, W (channel width)=5 mm.
Figure 2: Electrical and optical properties of 120 nm as-deposited In2O3 thin films on Corning 1737F glass substrates.
Figure 3: XRD, AFM and SIMS of IAD-derived In2O3 thin films in inorganic-only and inorganic–organic hybrid TFTs.
Figure 4: Field-effect device characteristics of inorganic-only TFTs on p+-Si substrates and inorganic–organic hybrid TFTs on n+-Si substrates and Corning 1737F glass substrates.
Figure 5: Typical field-effect device characteristics of fully transparent inorganic–organic hybrid TFTs on Corning 1737F glass substrates.

Similar content being viewed by others

References

  1. Kagan, C. R. & Andry, P. Thin-Film Transistors (Marcel Dekker, New York, 2003).

    Google Scholar 

  2. Facchetti, A., Yoon, M. H. & Marks, T. J. Gate dielectrics for organic field-effect transistors: New opportunities for organic electronics. Adv. Mater. 17, 1705–1725 (2005).

    Google Scholar 

  3. Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    Google Scholar 

  4. Wager, J. F. Transparent electronics. Science 300, 1245–1246 (2003).

    Google Scholar 

  5. Chang, Y.-J. et al. Growth, characterization and application of CdS thin films deposited by chemical bath deposition. Surf. Interface Anal. 37, 398–405 (2005).

    Google Scholar 

  6. Gan, F. Y. & Shih, I. Preparation of thin-film transistors with chemical bath deposited CdSe and CdS thin films. IEEE Trans. Electron Device 49, 15–18 (2002).

    Google Scholar 

  7. Kobayashi, S. et al. Optical and electrical properties of amorphous and microcrystalline GaN films and their application to transparent TFT. Appl. Surf. Sci. 113–114, 480–484 (1997).

    Google Scholar 

  8. Landheer, D. et al. Back-surface passivation of polycrystalline CdSe thin-film transistors. J. Vac. Sci. Technol. A 16, 834–837 (1998).

    Google Scholar 

  9. Masson, D. P., Landheer, D., Quance, T. & Hulse, J. E. Bonding at the CdSe/SiOx (x=0,1,2) interfaces. J. Appl. Phys. 84, 4911–4920 (1998).

    Google Scholar 

  10. Long, K. et al. Stability of amorphous-silicon TFTs deposited on clear plastic substrates at 250 C to 280 C. IEEE Electron Device Lett. 27, 111–113 (2006).

    Google Scholar 

  11. Van der Wilt, P. C. et al. Low-temperature polycrystalline silicon thin-film transistors and circuits on flexible substrates. Mater. Res. Soc. Bull. 31, 461–465 (2006).

    Google Scholar 

  12. Sazonov, A., Meitine, M., Stryakhilev, D. & Nathan, A. Low-temperature materials and thin-film transistors for electronics on flexible substrates. Semiconductors 40, 959–967 (2006).

    Google Scholar 

  13. Cheng, I.-C., Kattamis, A. Z., Long, K., Sturm, J. C. & Wagner, S. Self-aligned amorphous-silicon TFTs on clear plastic substrates. IEEE Electron Device Lett. 27, 166–168 (2006).

    Google Scholar 

  14. Bonse, M., Thomasson, D. B., Klauk, H., Gundlach, D. J. & Jackson, T. N. Integrated a-Si:H/pentacene inorganic/organic complementary circuits. Technical Digest—International Electron Devices Meeting 249–252 (1998).

  15. Wong, W. S., Lujan, R., Daniel, J. H. & Limb, S. Digital lithography for large-area electronics on flexible substrates. J. Non-Cryst. Solids 352, 1981–1985 (2006).

    Google Scholar 

  16. Lee, S.-H. et al. Amorphous silicon film deposition by low temperature catalytic chemical vapor deposition (<150C) and laser crystallization for polycrystalline silicon thin-film transistor application. Jpn J. Appl. Phys. 2 45, L227–L229 (2006).

    Google Scholar 

  17. Cao, Q. et al. Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes. Appl. Phys. Lett. 88, 113511 (2006).

    Google Scholar 

  18. Chua, L.-L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature 434, 194–199 (2005).

    Google Scholar 

  19. Cicoira, F. et al. Correlation between morphology and field-effect-transistor mobility in tetracene thin films. Adv. Funct. Mater. 15, 375–380 (2005).

    Google Scholar 

  20. Facchetti, A., Yoon, M. H., Stern, C. L., Katz, H. E. & Marks, T. J. Building blocks for n-type organic electronics: Regiochemically modulated inversion of majority carrier sign in perfluoroarene-modified polythiophene semiconductors. Angew. Chem. Int. Edn Engl. 42, 3900–3903 (2003).

    Google Scholar 

  21. Katz, H. E. Recent advances in semiconductor performance and printing processes for organic transistor-based electronics. Chem. Mater. 16, 4748–4756 (2004).

    Google Scholar 

  22. Majewski, L. A., Schroeder, R. & Grell, M. One volt organic transistor. Adv. Mater. 17, 192–196 (2005).

    Google Scholar 

  23. Dehuff, N. L. et al. Transparent thin-film transistors with zinc indium oxide channel layer. J. Appl. Phys. 97, 064505 (2005).

    Google Scholar 

  24. Chiang, H. Q., Wager, J. F., Hoffman, R. L., Jeong, J. & Keszler, D. A. High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys. Lett. 86, 013503 (2005).

    Google Scholar 

  25. Presley, R. E. et al. Tin oxide transparent thin-film transistors. J. Phys. D 37, 2810–2813 (2004).

    Google Scholar 

  26. Kwon, Y. et al. Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn, Mg)O channel. Appl. Phys. Lett. 84, 2685–2687 (2004).

    Google Scholar 

  27. Hoffman, R. L., Norris, B. J. & Wager, J. F. ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733–735 (2003).

    Google Scholar 

  28. Nomura, K. et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269–1272 (2003).

    Google Scholar 

  29. Fortunato, E. M. C. et al. Fully transparent ZnO thin-film transistor produced at room temperature. Adv. Mater. 17, 590–594 (2005).

    Google Scholar 

  30. Radha Krishna, B., Subramanyam, T. K., Srinivasulu Naidu, B. & Uthanna, S. Effect of substrate temperature on the electrical and optical properties of dc reactive magnetron sputtered indium oxide films. Opt. Mater. 15, 217–224 (2000).

    Google Scholar 

  31. Weiher, R. L. & Ley, R. P. Optical properties of indium oxide. J. Appl. Phys. 37, 299–302 (1966).

    Google Scholar 

  32. Weiher, R. L. Electrical properties of single crystals of indium oxide. J. Appl. Phys. 33, 2834–2839 (1962).

    Google Scholar 

  33. Wang, L., Yang, Y., Marks, T. J., Liu, Z. & Ho, S.-T. Near-infrared transparent electrodes for precision Teng-Man electro-optic measurements: In2O3 thin-film electrodes with tunable near-infrared transparency. Appl. Phys. Lett. 87, 161107 (2005).

    Google Scholar 

  34. Yoon, M. H., Facchetti, A. & Marks, T. J. σπ molecular dielectric multilayers for low-voltage organic thin-film transistors. Proc. Natl Acad. Sci. USA 102, 4678–4682 (2005).

    Google Scholar 

  35. Yoon, M. H., Yan, H., Facchetti, A. & Marks, T. J. Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics. J. Am. Chem. Soc. 127, 10388–10395 (2005).

    Google Scholar 

  36. Xu, G. et al. Organic electro-optic modulator using transparent conducting oxides as electrodes. Opt. Express 13, 7380–7385 (2005).

    Google Scholar 

  37. Yang, Y. et al. High-performance organic light-emitting diodes using ITO anodes grown on plastic by room-temperature ion-assisted deposition. Adv. Mater. 16, 321–324 (2004).

    Google Scholar 

  38. Bao, Z., Kuck, V., Rogers, J. A. & Paczkowski, M. A. Silsesquioxane resins as high-performance solution processible dielectric materials for organic transistor applications. Adv. Funct. Mater. 12, 526–531 (2002).

    Google Scholar 

  39. Standard Test Methods for Measuring Adhesion by Tape Test (D3359-02, ASTM International, 2002).

  40. Charbonnier, M., Romand, M., Goepfert, Y., Leonard, D. & Bouadi, M. Copper metallization of polymers by a palladium-free electroless process. Surf. Coat. Technol. 200, 5478–5486 (2006).

    Google Scholar 

  41. Garza, M., Liu, J., Magtoto, N. P. & Kelber, J. A. Adhesion behavior of electroless deposited Cu on Pt/Ta silicate and Pt/SiO2 . Surf. Coat. Technol. 222, 253–262 (2004).

    Google Scholar 

  42. Metz, A. W. et al. Transparent conducting oxides: Texture and microstructure effects on charge carrier mobility in MOCVD-derived CdO thin films grown with a thermally stable, low-melting precursor. J. Am. Chem. Soc. 126, 8477–8492 (2004).

    Google Scholar 

  43. Wang, L., Yang, Y., Jin, S. & Marks, T. J. MgO(100) template layer for CdO thin film growth: Strategies to enhance microstructural crystallinity and charge carrier mobility. Appl. Phys. Lett. 88, 162115.

  44. Taga, N., Shigesato, Y. & Kamei, M. Electrical properties and surface morphology of heteroepitaxial-grown tin-doped indium oxide thin films deposited by molecular-beam epitaxy. J. Vac. Sci. Technol. A 18, 1663–1667 (2000).

    Google Scholar 

  45. Colinge, J. P. Subthreshold slope of thin-film SOI MOSFET’s. IEEE Electron Device Lett. 7, 244–246 (1986).

    Google Scholar 

  46. Levinson, J. et al. Conductivity behavior in polycrystalline semiconductor thin film transistors. J. Appl. Phys. 53, 1193–1202 (1982).

    Google Scholar 

Download references

Acknowledgements

We thank the NASA Institute for Nanoelectronics and Computing (NCC2-3163) and DARPA/ARO (W911NF-05-1-0187) for support of this research. Characterization facilities were provided by the Northwestern University MRSEC (NSF-DMR-00760097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobin J. Marks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1-S4 (PDF 218 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Yoon, MH., Lu, G. et al. High-performance transparent inorganic–organic hybrid thin-film n-type transistors. Nature Mater 5, 893–900 (2006). https://doi.org/10.1038/nmat1755

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1755

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing