Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ratchet without spatial asymmetry for controlling the motion of magnetic flux quanta using time-asymmetric drives

Abstract

Initially inspired by biological motors, new types of nanodevice have been proposed for controlling the motion of nanoparticles. Structures incorporating spatially asymmetric potential profiles (ratchet substrates) have been realized experimentally to manipulate vortices in superconductors, particles in asymmetric silicon pores, as well as charged particles through artificial pores and arrays of optical tweezers. Using theoretical ideas, we demonstrate experimentally how to guide flux quanta in layered superconductors using a drive that is asymmetric in time instead of being asymmetric in space. By varying the time-asymmetry of the drive, we are able experimentally to increase or decrease the density of magnetic flux at the centre of superconducting samples that have no spatial ratchet substrate. This is the first ratchet without a ratchet potential. The experimental results can be well described by numerical simulations considering the dragging effect of two types of vortices penetrating layered superconductors in tilted magnetic fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Introduction to the operation of the ratchet device.
Figure 2: Experimental scanning Hall probe images of dragging/brushing of PVs by JV stacks.
Figure 3: Results of d.c. lensing.
Figure 4: Time dependence of the a.c.-driven ratchet device.
Figure 5: Investigations of lensing efficiency.
Figure 6: The simulated asymmetrically a.c.-driven vortex lens.

Similar content being viewed by others

References

  1. Hänggi, P., Marchesoni, F. & Nori, F. Brownian motors. Ann. Phys. (Leipz.) 14, 51–70 (2005).

    Article  Google Scholar 

  2. Hänggi, P. & Marchesoni, F. Introduction: 100 years of Brownian motion. Chaos 15, 026101 (2005).

    Article  Google Scholar 

  3. Linke, H. et al. Experimental tunneling ratchets. Science 286, 2314–2317 (1999).

    Article  Google Scholar 

  4. Linke, H. (ed.) Ratchets and Brownian motors: Basics, experiments and applications. Appl. Phys. A 75 (special issue), 167 (2002).

  5. Matthias, S. & Muller, F. Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets. Nature 424, 53–57 (2003).

    Article  Google Scholar 

  6. Rousselet, J., Salome, L., Ajdari, A. & Prost, J. Directional motion of Brownian particles induced by a periodic asymmetric potential. Nature 370, 446–448 (1994).

    Article  Google Scholar 

  7. Derényi, I., Lee, C. & Barabási, A. L. Ratchet effect in surface electromigration: Smoothing surfaces by an ac field. Phys. Rev. Lett. 80, 1473–1476 (1998).

    Article  Google Scholar 

  8. Wambaugh, J. F. et al. Superconducting fluxon pumps and lenses. Phys. Rev. Lett. 83, 5106–5109 (1999).

    Article  Google Scholar 

  9. Olson, C. J. et al. Collective interaction-driven ratchet for transporting flux quanta. Phys. Rev. Lett. 87, 177002 (2001).

    Article  Google Scholar 

  10. Zhu, B. Y. et al. Controlling the motion of magnetic flux quanta. Phys. Rev. Lett. 92, 180602 (2004).

    Article  Google Scholar 

  11. Lee, C.-S. et al. Reducing vortex density in superconductors using the ‘ratchet effect’. Nature 400, 337–340 (1999).

    Article  Google Scholar 

  12. Kwok, W. K. et al. Modification of vortex behavior through heavy ion lithography. Physica C 382, 137–141 (2002).

    Article  Google Scholar 

  13. Villegas, J. E. et al. A superconducting reversible rectifier that controls the motion of magnetic flux quanta. Science 302, 1188–1191 (2003).

    Article  Google Scholar 

  14. Van de Vondel, J. et al. Vortex-rectification effects in films with periodic asymmetric pinning. Phys. Rev. Lett. 94, 057003 (2005).

    Article  Google Scholar 

  15. Togawa, Y. et al. Direct observation of rectified motion of vortices in a niobium superconductor. Phys. Rev. Lett. 95, 087002 (2005).

    Article  Google Scholar 

  16. Wördenweber, R., Dymashevski, P. & Misko, V. R. Guidance of vortices and the vortex ratchet effect in high-Tc superconducting thin films obtained by arrangement of antidots. Phys. Rev. B 69, 184504 (2004).

    Article  Google Scholar 

  17. Majer, J. B., Peguiron, J., Grifoni, M., Tusveld, M. & Mooij, J. E. Quantum ratchet effect for vortices. Phys. Rev. Lett. 90, 056802 (2003).

    Article  Google Scholar 

  18. Shalom, D. E. & Pastoriza, H. Vortex motion rectification in Josephson junction arrays with a ratchet potential. Phys. Rev. Lett. 94, 177001 (2005).

    Article  Google Scholar 

  19. Siwy, Z. & Fuli’nski, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89, 198103 (2002).

    Article  Google Scholar 

  20. Marquet, C. et al. Rectified motion of colloids in asymmetrically structured channels. Phys. Rev. Lett. 88, 168301 (2002).

    Article  Google Scholar 

  21. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  Google Scholar 

  22. Gopinathan, A. & Grier, D. G. Statistically locked-in transport through periodic potential landscapes. Phys. Rev. Lett. 92, 130602 (2004).

    Article  Google Scholar 

  23. Lee, S., Ladavac, K., Polin, M. & Grier, D. G. Observation of flux reversal in a symmetric optical thermal ratchet. Phys. Rev. Lett. 94, 110601 (2005).

    Article  Google Scholar 

  24. You, J. Q. & Nori, F. Superconducting circuits and quantum information. Phys. Today 58, 42–47 (2005).

    Article  Google Scholar 

  25. Morais-Cabral, J. H. et al. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37–42 (2001).

    Article  Google Scholar 

  26. Matsuda, T. et al. Oscillating rows of vortices in superconductors. Science 294, 2136–2138 (2001).

    Article  Google Scholar 

  27. Grigorenko, A., Bending, S., Tamegai, T., Ooi, S. & Henini, M. A one-dimensional chain state of vortex matter. Nature 414, 728–731 (2001).

    Article  Google Scholar 

  28. Vlasko-Vlasov, V. K. et al. Decoration of Josephson vortices by pancake vortices in Bi2Sr2CaCu2O8+δ . Phys. Rev. B 66, 014523 (2002).

    Article  Google Scholar 

  29. Tokunaga, M. et al. Visualization of vortex chains in Bi2Sr2CaCu2O8+y by magneto-optical imaging. Phys. Rev. B 66, 060507(R) (2002).

    Article  Google Scholar 

  30. Ooi, S. et al. Vortex matter transition in Bi2Sr2CaCu2O8+y under tilted fields. Phys. Rev. B 63, 20501(R) (2001).

    Article  Google Scholar 

  31. Ooi, S. et al. Novel angular scaling of vortex phase transitions in Bi2Sr2CaCu2O8+y . Phys. Rev. Lett. 82, 4308–4311 (1999).

    Article  Google Scholar 

  32. Mirković, J. et al. Stepwise behavior of vortex-lattice melting transition in tilted magnetic fields in single crystals of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 86, 886–889 (2001).

    Article  Google Scholar 

  33. Savel’ev, S. & Nori, F. Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors. Nature Mater. 1, 179–184 (2002).

    Article  Google Scholar 

  34. Savel’ev, S., Marchesoni, F. & Nori, F. Manipulating small particles in mixtures far from equilibrium. Phys. Rev. Lett. 92, 160602 (2004).

    Article  Google Scholar 

  35. <http://dml.riken.go.jp/vortex>; http://staff.bath.ac.uk/pyssb/1DMovies.htm.

  36. Bulaevskii, L. N., Ledvij, M. & Kogan, V. G. Vortices in layered superconductors with Josephson coupling. Phys. Rev. B 46, 366–380 (1992).

    Article  Google Scholar 

  37. Koshelev, A. E. Crossing lattices, vortex chains, and angular dependence of melting line in layered superconductors. Phys. Rev. Lett. 83, 187–190 (1999).

    Article  Google Scholar 

  38. Savel’ev, S. E., Mirković, J. & Kadowaki, K. London theory of the crossing vortex lattice in highly anisotropic layered superconductors. Phys. Rev. B 64, 094521 (2001).

    Article  Google Scholar 

  39. Perkins, G. J., Caplin, A. D. & Cohen, L. F. Dynamic interactions between pancake vortex stacks and Josephson vortices in Bi2Sr2CaCu2O8+δ single crystals: relaxation and ratchets. Supercond. Sci. Technol. 18, 1290–1293 (2005).

    Article  Google Scholar 

  40. Motohira, N. et al. Single crystal growth of Bi2Sr2Can−1CunOy superconductors by the floating zone method. J. Ceram. Soc. Jpn 97, 1009–1014 (1989).

    Article  Google Scholar 

  41. James, M. S., Stoddart, S. T. & Bending, S. J. Field penetration and surface barriers in superconducting Bi2Sr2CaCu2O8+δ whiskers. Phys. Rev. B 56, R5771–R5773 (1997).

    Article  Google Scholar 

  42. Koshelev, A. E. Kink walls and critical behavior of magnetization near the lock-in transition in layered superconductors. Phys. Rev. B 48, 1180–1191 (1993).

    Article  Google Scholar 

  43. Avraham, N. et al. ‘Inverse’ melting of a vortex lattice. Nature 411, 451–454 (2001).

    Article  Google Scholar 

  44. Savel'ev, S. E. & Gorbachev, V. S. Microscopic model of critical state for the hard superconductor. JETP 83, 570–581 (1996).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the EPSRC (UK) under grant No. GR/R46489/01, the ESF VORTEX network, the US NSA and ARDA under AFOSR contract No. F49620-02-1-0334, NSF grant No. EIA-0130383, and a Grant-in-Aid for Scientific Research from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Bending.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, D., Bending, S., Savel'ev, S. et al. Ratchet without spatial asymmetry for controlling the motion of magnetic flux quanta using time-asymmetric drives. Nature Mater 5, 305–311 (2006). https://doi.org/10.1038/nmat1608

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1608

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing