Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Computing the mobility of grain boundaries

Abstract

As current experimental and simulation methods cannot determine the mobility of flat boundaries across the large misorientation phase space, we have developed a computational method for imposing an artificial driving force on boundaries. In a molecular dynamics simulation, this allows us to go beyond the inherent timescale restrictions of the technique and induce non-negligible motion in flat boundaries of arbitrary misorientation. For different series of symmetric boundaries, we find both expected and unexpected results. In general, mobility increases as the grain boundary plane deviates from (111), but high-coincidence and low-angle boundaries represent special cases. These results agree with and enrich experimental observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example of a computational experiment for the mobility of a symmetric 55 [111] mixed-type grain boundary in f.c.c. aluminium.
Figure 2
Figure 3: Mobility of aluminium grain boundaries at 800 K with different misorientation angles around a [111]-type axis and various grain boundary planes.

Similar content being viewed by others

References

  1. Zhang, H., Mendelev, M. I. & Srolovitz, D. J. Computer simulation of the elastically driven migration of a flat grain boundary. Acta Mater. 52, 2569–2576 (2004).

    Article  Google Scholar 

  2. Huang, Y. & Humphreys, F. J. Measurements of grain boundary mobility during recrystallization of a single-phase aluminium alloy. Acta Mater. 47, 2259–2268 (1999).

    Article  Google Scholar 

  3. Winning, M., Gottstein, G. & Shvindlerman, L. S. On the mechanisms of grain boundary migration. Acta Mater. 50, 353–363 (2002).

    Article  Google Scholar 

  4. Upmanyu, M., Srolovitz, D. J., Shvindlerman, L. S. & Gottstein, G. Molecular dynamics simulation of triple junction migration. Acta Mater. 50, 1405–1420 (2002).

    Article  Google Scholar 

  5. Zhang, H., Upmanyu, M. & Srolovitz, D. J. Curvature driven grain boundary migration in aluminum: molecular dynamics simulations. Acta Mater. 53, 79–86 (2005).

    Article  Google Scholar 

  6. Adams, B. L., Kinderlehrer, D., Mullins, W. W., Rollett, A. D. & Ta’asan, S. Extracting the relative grain boundary free energy and mobility functions from the geometry of microstructures. Scripta Mater. 38, 531–536 (1998).

    Article  Google Scholar 

  7. Saylor, D. M., Morawiec, A. & Rohrer, G. S. The relative free energies of grain boundaries in magnesia as a function of five macroscopic parameters. Acta Mater. 51, 3675–3868 (2003).

    Article  Google Scholar 

  8. Janssens, K. G. F. Three dimensional space-time coupled cellular automata for the simulation of recrystallization and grain growth. Model. Simul. Mater. Sci. 11, 157–171 (2003).

    Article  Google Scholar 

  9. Anderson, P., Grest, G. S. & Srolovitz, D. J. Computer simulation of normal grain growth in three dimensions. Phil. Mag. B 59, 293–329 (1989).

    Article  Google Scholar 

  10. Rollett, A. D. & Raabe, D. A hybrid model for mesoscopic simulation of recrystallization. Comp. Mater. Sci. 21, 69–78 (2001).

    Article  Google Scholar 

  11. Krill, C. E. III & Chen, L. Q. Computer simulation of 3-D grain growth using a phase-field model. Acta Mater. 50, 3057–3073 (2002).

    Google Scholar 

  12. Kuprat, A., George, D., Straub, G. & Demirel, M. C. Modeling microstructure evolution in three dimensions with Grain3D and LaGriT. Comp. Mater. Sci. 28, 199–208 (2003).

    Article  Google Scholar 

  13. Raabe, D., Roters, F., Barlat, F. & Chen, L.-Q. Continuum Scale Simulation of Engineering Materials: Fundamentals - Microstructures - Process Applications (Wiley-VCH, Weinheim, 2004).

    Book  Google Scholar 

  14. Sethian, J. A. Level Set Methods and Fast Marching Methods (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  15. Van Swygenhoven, H., Farkas, D. & Caro, A. Grain boundary structures in polycrystalline metals at the nanoscale. Phys. Rev. B 62, 831–838 (2000).

    Article  Google Scholar 

  16. Schonfelder, B., Wolf, D., Phillpot, S. R. & Furtkamp, M. Molecular-dynamics method for the simulation of grain-boundary migration. Interface Sci. 5, 245–262 (1997).

    Article  Google Scholar 

  17. Ercolessi, F. & Adams, J. B. Interatomic potentials from 1st principles calculations—the force matching method. Europhys. Lett. 26, 583–588 (1994).

    Article  Google Scholar 

  18. Plimpton, S. J. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995).

    Article  Google Scholar 

  19. http://www.cs.sandia.gov/˜sjplimp/lammps.html.

  20. Gottstein, G. & Shvindlerman, L. S. Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications (CRC, Boca Raton, Florida, 1999).

    Google Scholar 

  21. Humphreys, F. J. & Hatherly, M. Recrystallization and Related Annealing Phenomena (Pergamon, Oxford, 1996).

    Google Scholar 

  22. Palumbo, G., Lehockey, E. M. & Lin, P. Applications for grain boundary engineered materials. JOM 50, 40–43 (1998).

    Article  Google Scholar 

  23. Liebmann, B., Lücke, K., Graham, C. D., Cahn, R. W. & Dunn, C. G. Grain growth rates and orientation relationships in the recrystallization of aluminum single crystals. Trans. AIME 206, 1413–1416 (1956).

    Google Scholar 

  24. Gleiter, H. The mechanism of grain boundary migration. Acta Metall. 17, 565–573 (1969).

    Article  Google Scholar 

  25. Gleiter, H. Theory of grain boundary migration rate. Acta Metall. 17, 853–862 (1969).

    Article  Google Scholar 

  26. Shvindlerman, L. S., Gottstein, G. & Molodov, D. A. Grain boundary motion in pure metals: effect of interaction between adsorbed atoms at moving boundaries. Phys. Status Solidi A 160, 419–429 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koenraad G. F. Janssens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssens, K., Olmsted, D., Holm, E. et al. Computing the mobility of grain boundaries. Nature Mater 5, 124–127 (2006). https://doi.org/10.1038/nmat1559

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1559

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing