Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer

This article has been updated

Abstract

Major histocompatibility complex (MHC) class I glycoproteins bind peptides in the endoplasmic reticulum after incorporation into the peptide-loading complex, whose core is the transporter associated with antigen processing. Other components are the chaperone calreticulin, the thiol oxidoreductase ERp57, and tapasin. Tapasin and ERp57 have been shown to exist in the peptide-loading complex as a disulfide-linked heterodimer. Here, using a cell-free system, we demonstrate that although recombinant tapasin was ineffective in recruiting MHC class I molecules and facilitating peptide binding, recombinant tapasin-ERp57 conjugates accomplished both of those functions and also 'edited' the repertoire of bound peptides to maximize their affinity. Thus, the tapasin-ERp57 conjugate is the functional unit of the peptide-loading complex that generates MHC class I molecules with stably associated peptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression and analysis of recombinant tapasin-ERp57 conjugates.
Figure 2: Assay for PLC subcomplex assembly and function.
Figure 3: The recombinant conjugate interacts with newly synthesized MHC class I molecules.
Figure 4: The conjugate stabilizes MHC class I molecules and facilitates peptide loading.
Figure 5: A peptide-editing function for the tapasin-ERp57 conjugate.

Similar content being viewed by others

Change history

  • 13 July 2007

    In the version of this article initially published online, the right side of Figure 1c was cut off. The error has been corrected for all versions of the article.

References

  1. Cresswell, P., Ackerman, A.L., Giodini, A., Peaper, D.R. & Wearsch, P.A. Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol. Rev. 207, 145–147 (2005).

    Article  CAS  Google Scholar 

  2. Momburg, F. & Tan, P. Tapasin-the keystone of the loading complex optimizing peptide binding by MHC class I molecules in the endoplasmic reticulum. Mol. Immunol. 39, 217–233 (2002).

    Article  CAS  Google Scholar 

  3. Bangia, N., Lehner, P.J., Hughes, E.A., Surman, M. & Cresswell, P. The N-terminal region of tapasin is required to stabilize the MHC class I loading complex. Eur. J. Immunol. 29, 1858–1870 (1999).

    Article  CAS  Google Scholar 

  4. Garbi, N., Tiwari, N., Momburg, F. & Hammerling, G.J. A major role for tapasin as a stabilizer of the TAP peptide transporter and consequences for MHC class I expression. Eur. J. Immunol. 33, 264–273 (2003).

    Article  CAS  Google Scholar 

  5. Sadasivan, B., Lehner, P.J., Ortmann, B., Spies, T. & Cresswell, P. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5, 103–114 (1996).

    Article  CAS  Google Scholar 

  6. Lehner, P.J., Surman, M.J. & Cresswell, P. Soluble tapasin restores MHC class I expression and function in the tapasin-negative cell line .220. Immunity 8, 221–231 (1998).

    Article  CAS  Google Scholar 

  7. Tan, P. et al. Recruitment of MHC class I molecules by tapasin into the transporter associated with antigen processing-associated complex is essential for optimal peptide loading. J. Immunol. 168, 1950–1960 (2002).

    Article  CAS  Google Scholar 

  8. Schoenhals, G.J. et al. Retention of empty MHC class I molecules by tapasin is essential to reconstitute antigen presentation in invertebrate cells. EMBO J. 18, 743–753 (1999).

    Article  CAS  Google Scholar 

  9. Barnden, M.J., Purcell, A.W., Gorman, J.J. & McCluskey, J. Tapasin-mediated retention and optimization of peptide ligands during the assembly of class I molecules. J. Immunol. 165, 322–330 (2000).

    Article  CAS  Google Scholar 

  10. Grandea, A.G., III et al. Impaired assembly yet normal trafficking of MHC class I molecules in tapasin mutant mice. Immunity 13, 213–222 (2000).

    Article  CAS  Google Scholar 

  11. Greenwood, R., Shimizu, Y., Sekhon, G.S. & DeMars, R. Novel allele-specific, post-translational reduction in HLA class I surface expression in a mutant human B cell line. J. Immunol. 153, 5525–5536 (1994).

    CAS  PubMed  Google Scholar 

  12. Garbi, N. et al. Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat. Immunol. 1, 234–238 (2000).

    Article  CAS  Google Scholar 

  13. Carreno, B.M. et al. TAP associates with a unique class I conformation, whereas calnexin associates with multiple class I forms in mouse and man. J. Immunol. 155, 4726–4733 (1995).

    CAS  PubMed  Google Scholar 

  14. Grandea, A.G., III, Lehner, P.J., Cresswell, P. & Spies, T. Regulation of MHC class I heterodimer stability and interaction with TAP by tapasin. Immunogenetics 46, 477–483 (1997).

    Article  CAS  Google Scholar 

  15. Owen, B.A.L. & Pease, L.R. TAP association influences the conformation of nascent MHC class I molecules. J. Immunol. 162, 4677–4684 (1999).

    CAS  PubMed  Google Scholar 

  16. Myers, N.B. et al. Kb, Kd and Ld molecules share common tapasin dependencies as determined using a novel epitope tag. J. Immunol. 165, 5656–5663 (2000).

    Article  CAS  Google Scholar 

  17. Williams, A.P., Peh, C.A., Purcell, A.W., McCluskey, J. & Elliott, T. Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity 16, 509–520 (2002).

    Article  CAS  Google Scholar 

  18. Howarth, M., Williams, A., Tolstrup, A.B. & Elliott, T. Tapasin enhances MHC class I peptide presentation according to peptide half-life. Proc. Natl. Acad. Sci. USA 101, 11737–11742 (2004).

    Article  CAS  Google Scholar 

  19. Elliott, T. & Williams, A. The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex. Immunol. Rev. 207, 89–99 (2005).

    Article  CAS  Google Scholar 

  20. Zarling, A.L. et al. Tapasin is a facilitator, not an editor, of class I MHC peptide binding. J. Immunol. 171, 5287–5295 (2003).

    Article  CAS  Google Scholar 

  21. Garbi, N., Hammerling, G. & Tanaka, S. Interaction of ERp57 and tapasin in the generation of MHC class I-peptide complexes. Curr. Opin. Immunol. 19, 99–105 (2007).

    Article  CAS  Google Scholar 

  22. Dick, T.P., Bangia, N., Peaper, D.R. & Cresswell, P. Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity 16, 87–98 (2002).

    Article  CAS  Google Scholar 

  23. Peaper, D.R., Wearsch, P.A. & Cresswell, P. Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. EMBO J. 24, 3613–3623 (2005).

    Article  CAS  Google Scholar 

  24. Ellgaard, L. & Ruddock, L.W. The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep. 6, 28–32 (2005).

    Article  CAS  Google Scholar 

  25. Walker, K.W. & Gilbert, H.F. Scanning and escape during protein-disulfide iosmerase-assisted folding. J. Biol. Chem. 272, 8845–8848 (1997).

    Article  CAS  Google Scholar 

  26. Garbi, N., Tanaka, S., Momburg, F. & Hammerling, G.J. Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57. Nat. Immunol. 7, 93–102 (2006).

    Article  CAS  Google Scholar 

  27. Frickel, E.M. et al. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc. Natl. Acad. Sci. USA 99, 1954–1959 (2002).

    Article  CAS  Google Scholar 

  28. Wearsch, P.A. et al. Major histocompatibility complex class I molecules expressed with monoglucosylated N-linked glycans bind calreticulin independently of their assembly status. J. Biol. Chem. 279, 25112–25121 (2004).

    Article  CAS  Google Scholar 

  29. Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004).

    Article  CAS  Google Scholar 

  30. Kjer-Nielsen, L. et al. The structure of HLA-B8 complexed to an immunodominant viral determinant: Peptide-induced conformational changes and a mode of MHC class I dimerization. J. Immunol. 169, 5153–5160 (2002).

    Article  Google Scholar 

  31. Sutton, J. et al. A sequence pattern for peptides presented to cytotoxic T lymphocytes by HLA-B8 revealed by analysis of epitopes and elutes peptides. Eur. J. Immunol. 23, 447–453 (1993).

    Article  CAS  Google Scholar 

  32. Wei, M.L. & Cresswell, P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356, 443–446 (1992).

    Article  CAS  Google Scholar 

  33. Chen, M. & Bouvier, M. Analysis of interactions in a tapasin/class I complex provides a mechanism for peptide selection. EMBO J. 26, 1681–1690 (2007).

    Article  CAS  Google Scholar 

  34. Rizvi, S.M. & Raghavan, M. Direct peptide-regulatable interactions between MHC class I molecules and tapasin. Proc. Natl. Acad. Sci. USA 103, 18220–18225 (2006).

    Article  CAS  Google Scholar 

  35. Neefjes, J.J., Hammerling, G.J. & Momburg, F. Folding and assembly of major histocompatibility complex class I heterodimers in the endoplasmic reticulum of intact cells precedes the binding of peptide. J. Exp. Med. 178, 1971–1980 (1993).

    Article  CAS  Google Scholar 

  36. Stratikos, E., Wiley, D.C. & Stern, L.J. Enhanced catalytic action of HLA-DM on the exchange of peptides lacking backbone hydrogen bonds between their N-terminal region and the MHC class II α-chain. J. Immunol. 172, 1109–1117 (2004).

    Article  CAS  Google Scholar 

  37. Narayan, K. et al. HLA-DM targets the hydrogen bond between the histidine at position β81 and peptide to dissociate HLA-DR-peptide complexes. Nat. Immunol. 8, 92–100 (2007).

    Article  CAS  Google Scholar 

  38. Lewis, J.W., Neisig, A., Neefjes, J. & Elliott, T. Point mutations in the α2 domain of HLA-A2.1 define a functionally relevant interaction with TAP. Curr. Biol. 6, 873–883 (1996).

    Article  CAS  Google Scholar 

  39. Warburton, R.J. et al. Mutation of the α2 domain disulfide bridge of the class I HLA-A*0201. Effect on maturation and peptide presentation. Hum. Immunol. 39, 261–271 (1994).

    Article  CAS  Google Scholar 

  40. Park, B. et al. Redox regulation facilitates optimal peptide selection by MHC class I during antigen processing. Cell 127, 369–382 (2006).

    Article  CAS  Google Scholar 

  41. Peh, C.A. et al. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity 8, 531–542 (1998).

    Article  CAS  Google Scholar 

  42. Diedrich, G., Bangia, N., Pan, M. & Cresswell, P. A role for calnexin in the assembly of the MHC class I loading complex in the endoplasmic reticulum. J. Immunol. 166, 1703–1709 (2001).

    Article  CAS  Google Scholar 

  43. Lutz, P.M. & Cresswell, P. An epitope common to HLA class I and class II antigens, Ig light chains, and β2-microglobulin. Immunogenetics 25, 228–233 (1987).

    Article  CAS  Google Scholar 

  44. Parham, P., Barnstable, C.J. & Bodmer, W.F. Use of a monoclonal Ab (W6/32) in structural studies of HLA-A,B,C antigens. J. Immunol. 123, 342–349 (1979).

    CAS  PubMed  Google Scholar 

  45. Burrows, S.R., Sculley, T.B., Misko, I.S., Schmidt, C. & Moss, D.J. An Epstein-Barr virus-specific cytotoxic T cell epitope in EBV nuclear antigen (EBNA 3). J. Exp. Med. 171, 345–349 (1990).

    Article  CAS  Google Scholar 

  46. Jardetzky, T.S., Lane, W.S., Robinson, R.A., Madden, D.R. & Wiley, D.C. Identification of self peptides bound to purified HLA-B27. Nature 353, 326–329 (1991).

    Article  CAS  Google Scholar 

  47. Bertoletti, A. et al. Definition of a minimal optimal cytotoxic T-cell epitope within the hepatitis B virus nucleocapsid protein. J. Virol. 67, 2376–2380 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jensen, P.E., Moore, J.C. & Lukacher, A.E. A europium fluoroimmunoassay for measuring peptide binding to MHC class I molecules. J. Immunol. Methods 215, 71–80 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Peaper for discussions and critical review of the manuscript; S. Mitchell, R. Teel and A. Little for technical assistance; and N. Dometios for aid in preparing this manuscript. Supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

P.A.W. designed and implemented all experiments; P.A.W. and P.C. wrote the paper.

Corresponding author

Correspondence to Peter Cresswell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wearsch, P., Cresswell, P. Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nat Immunol 8, 873–881 (2007). https://doi.org/10.1038/ni1485

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1485

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing