Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

AID to overcome the limitations of genomic information

Abstract

The limitations of genomic information forced our ancestors to adopt a strategy for introducing somatic DNA alterations with the risk of genome instability. Although activation-induced deaminase (AID) is involved in DNA cleavage in somatic hypermutation and class-switch recombination, its mechanism of action has been debated extensively, with the two main hypotheses being distinguished by the chief target of AID: RNA or DNA. The principle distinction between the two hypotheses is the requirement for translation of edited mRNA or uracil removal from DNA for DNA cleavage. Although a series of experiments has provided support for the 'RNA-editing' hypothesis and requires reevaluation of the 'DNA-deamination' hypothesis, definitive proof is yet to come.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA-editing and DNA-deamination models.
Figure 2: Functions of UNG and MSH2 in CSR.
Figure 3: Association of AID with CSR- and SHM-specific cofactors.

Similar content being viewed by others

References

  1. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  2. Gellert, M. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71, 101–132 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Neuberger, M.S. & Milstein, C. Somatic hypermutation. Curr. Opin. Immunol. 7, 248–254 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Storb, U. et al. Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunol. Rev. 162, 153–160 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Azuma, T., Motoyama, N., Fields, L.E. & Loh, D.Y. Mutations of the chloramphenicol acetyl transferase transgene driven by the immunoglobulin promoter and intron enhancer. Int. Immunol. 5, 121–130 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Bachl, J. & Olsson, C. Hypermutation targets a green fluorescent protein-encoding transgene in the presence of immunoglobulin enhancers. Eur. J. Immunol. 29, 1383–1389 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Yelamos, J. et al. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature 376, 225–229 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Rogozin, I.B. & Kolchanov, N.A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim. Biophys. Acta 1171, 11–18 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Iwasato, T., Shimizu, A., Honjo, T. & Yamagishi, H. Circular DNA is excised by immunoglobulin class switch recombination. Cell 62, 143–149 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Matsuoka, M., Yoshida, K., Maeda, T., Usuda, S. & Sakano, H. Switch circular DNA formed in cytokine-treated mouse splenocytes: evidence for intramolecular DNA deletion in immunoglobulin class switching. Cell 62, 135–142 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. von Schwedler, U., Jack, H.M. & Wabl, M. Circular DNA is a product of the immunoglobulin class switch rearrangement. Nature 345, 452–456 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Di Noia, J. & Neuberger, M.S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–48 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Barreto, V.M., Ramiro, A.R. & Nussenzweig, M.C. Activation-induced deaminase: controversies and open questions. Trends Immunol. 26, 90–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Besmer, E., Gourzi, P. & Papavasiliou, F.N. The regulation of somatic hypermutation. Curr. Opin. Immunol. 16, 241–245 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Chaudhuri, J. & Alt, F.W. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat. Rev. Immunol. 4, 541–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Larson, E.D. & Maizels, N. Transcription-coupled mutagenesis by the DNA deaminase AID. Genome Biol. 5, 211–213 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee, G.S., Brandt, V.L. & Roth, D.B. B cell development leads off with a base hit: dU:dG mismatches in class switching and hypermutation. Mol. Cell 16, 505–508 (2004).

    CAS  PubMed  Google Scholar 

  23. Luo, Z., Ronai, D. & Scharff, M.D. The role of activation-induced cytidine deaminase in antibody diversification, immunodeficiency, and B-cell malignancies. J. Allergy Clin. Immunol. 114, 726–735 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Neuberger, M.S. et al. Opinion: Somatic hypermutation at A.T pairs: polymerase error versus dUTP incorporation. Nat. Rev. Immunol. 5, 171–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Petersen-Mahrt, S. DNA deamination in immunity. Immunol. Rev. 203, 80–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Begum, N.A. et al. Uracil DNA glycosylase activity is dispensable for immunoglobulin class switch. Science 305, 1160–1163 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Begum, N.A. et al. De novo protein synthesis is required for activation-induced cytidine deaminase-dependent DNA cleavage in immunoglobulin class switch recombination. Proc. Natl. Acad. Sci. USA 101, 13003–13007 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagaoka, H., Ito, S., Muramatsu, M., Nakata, M. & Honjo, T. DNA cleavage in immunoglobulin somatic hypermutation depends on de novo protein synthesis but not on uracil DNA glycosylase. Proc. Natl. Acad. Sci. USA 102, 2022–2027 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ito, S. et al. Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc. Natl. Acad. Sci. USA 101, 1975–1980 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shinkura, R. et al. Separate domains of AID are required for somatic hypermutation and class-switch recombination. Nat. Immunol. 5, 707–712 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Ta, V.T. et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat. Immunol. 4, 843–848 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Woo, C.J., Martin, A. & Scharff, M.D. Induction of somatic hypermutation is associated with modifications in immunoglobulin variable region chromatin. Immunity 19, 479–489 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Kong, Q. & Maizels, N. DNA breaks in hypermutating immunoglobulin genes: evidence for a break-and-repair pathway of somatic hypermutation. Genetics 158, 369–378 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bemark, M. & Neuberger, M.S. By-products of immunoglobulin somatic hypermutation. Genes Chromosom. Cancer 38, 32–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Doi, T., Kinoshita, K., Ikegawa, M., Muramatsu, M. & Honjo, T. De novo protein synthesis is required for the activation-induced cytidine deaminase function in class-switch recombination. Proc. Natl. Acad. Sci. USA 100, 2634–2638 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sawyer, S.L., Emerman, M. & Malik, H.S. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol. 2, 1278–1285 (2004).

    Article  CAS  Google Scholar 

  38. Conticello, S.G., Thomas, C.J., Petersen-Mahrt, S.K. & Neuberger, M.S. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol. Biol. Evol. 22, 367–377 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Yu, Q. et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat. Struct. Mol. Biol. 11, 435–442 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Jarmuz, A. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79, 285–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Chester, A. et al. The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. EMBO J. 22, 3971–3982 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brar, S.S., Watson, M. & Diaz, M. Activation-induced cytosine deaminase (AID) is actively exported out of the nucleus but retained by the induction of DNA breaks. J. Biol. Chem. 279, 26395–26401 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. McBride, K.M., Barreto, V., Ramiro, A.R., Stavropoulos, P. & Nussenzweig, M.C. Somatic hypermutation is limited by CRM1-dependent nuclear export of activation-induced deaminase. J. Exp. Med. 199, 1235–1244 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pasqualucci, L. et al. Expression of the AID protein in normal and neoplastic B cells. Blood 104, 3318–3325 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Rada, C., Jarvis, J.M. & Milstein, C. AID-GFP chimeric protein increases hypermutation of Ig genes with no evidence of nuclear localization. Proc. Natl. Acad. Sci. USA 99, 7003–7008 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barreto, V., Reina-San-Martin, B., Ramiro, A.R., McBride, K.M. & Nussenzweig, M.C. C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Mol. Cell 12, 501–508 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Mehta, A., Kinter, M.T., Sherman, N.E. & Driscoll, D.M. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol. Cell. Biol. 20, 1846–1854 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramiro, A.R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M.C. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat. Immunol. 4, 452–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Sohail, A., Klapacz, J., Samaranayake, M., Ullah, A. & Bhagwat, A.S. Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Res. 31, 2990–2994 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bransteitter, R., Pham, P., Calabrese, P. & Goodman, M.F. Biochemical analysis of hypermutational targeting by wild type and mutant activation-induced cytidine deaminase. J. Biol. Chem. 279, 51612–51621 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Bransteitter, R., Pham, P., Scharff, M.D. & Goodman, M.F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA 100, 4102–4107 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chaudhuri, J., Khuong, C. & Alt, F.W. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430, 992–998 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Dickerson, S.K., Market, E., Besmer, E. & Papavasiliou, F.N. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197, 1291–1296 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morgan, H.D., Dean, W., Coker, H.A., Reik, W. & Petersen-Mahrt, S.K. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J. Biol. Chem. 279, 52353–52360 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Pham, P., Bransteitter, R., Petruska, J. & Goodman, M.F. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424, 103–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Yu, K., Huang, F.T. & Lieber, M.R. DNA substrate length and surrounding sequence affect the activation-induced deaminase activity at cytidine. J. Biol. Chem. 279, 6496–6500 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Poltoratsky, V.P., Wilson, S.H., Kunkel, T.A. & Pavlov, Y.I. Recombinogenic phenotype of human activation-induced cytosine deaminase. J. Immunol. 172, 4308–4313 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Petersen-Mahrt, S.K. & Neuberger, M.S. In vitro deamination of cytosine to uracil in single-stranded DNA by apolipoprotein B editing complex catalytic subunit 1 (APOBEC1). J. Biol. Chem. 278, 19583–19586 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Harris, R.S., Petersen-Mahrt, S.K. & Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Rada, C. et al. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12, 1748–1755 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Rada, C., Di Noia, J.M. & Neuberger, M.S. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol. Cell 16, 163–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Bosma, G.C. et al. DNA-dependent protein kinase activity is not required for immunoglobulin class switching. J. Exp. Med. 196, 1483–1495 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Manis, J.P., Dudley, D., Kaylor, L. & Alt, F.W. IgH class switch recombination to IgG1 in DNA-PKcs-deficient B cells. Immunity 16, 607–617 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Martin, A. et al. Msh2 ATPase activity is essential for somatic hypermutation at a-T basepairs and for efficient class switch recombination. J. Exp. Med. 198, 1171–1178 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ehrenstein, M.R. & Neuberger, M.S. Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J. 18, 3484–3490 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schrader, C.E., Edelmann, W., Kucherlapati, R. & Stavnezer, J. Reduced isotype switching in splenic B cells from mice deficient in mismatch repair enzymes. J. Exp. Med. 190, 323–330 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wilson, T.M. et al. MSH2–MSH6 stimulates DNA polymerase η, suggesting a role for A:T mutations in antibody genes. J. Exp. Med. 201, 637–645 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Imai, K. et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat. Immunol. 4, 1023–1028 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Bross, L. & Jacobs, H. DNA double strand breaks occur independent of AID in hypermutating Ig genes. Clin. Dev. Immunol. 10, 83–89 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Papavasiliou, F.N. & Schatz, D.G. The activation-induced deaminase functions in a postcleavage step of the somatic hypermutation process. J. Exp. Med. 195, 1193–1198 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nambu, Y. et al. Transcription-coupled events associating with immunoglobulin switch region chromatin. Science 302, 2137–2140 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Wu, X., Geraldes, P., Platt, J.L. & Cascalho, M. The double-edged sword of activation-induced cytidine deaminase. J. Immunol. 174, 934–941 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Martin, A. & Scharff, M.D. AID and mismatch repair in antibody diversification. Nat. Rev. Immunol. 2, 605–614 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Martin, A. & Scharff, M.D. Somatic hypermutation of the AID transgene in B and non-B cells. Proc. Natl. Acad. Sci. USA 99, 12304–12308 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Okazaki, I.M. et al. Constitutive expression of AID leads to tumorigenesis. J. Exp. Med. 197, 1173–1181 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yoshikawa, K. et al. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296, 2033–2036 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Kotani, A. et al. Overexpressed activation induced cytidine deaminase mutates limited genes with variable base specificity. Proc. Natl. Acad. Sci. USA 102, 4506–4511 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kodama, M. et al. The PU.1 and NF-EM5 binding motifs in the Igκ 3′ enhancer are responsible for directing somatic hypermutations to the intrinsic hotspots in the transgenic Vκ gene. Int. Immunol. 13, 1415–1422 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Reynaud, C.A. et al. Mismatch repair and immunoglobulin gene hypermutation: did we learn something? Immunol. Today 20, 522–527 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Rada, C., Ehrenstein, M.R., Neuberger, M.S. & Milstein, C. Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity 9, 135–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Giusti, A.M. & Manser, T. Hypermutation is observed only in antibody H chain V region transgenes that have recombined with endogenous immunoglobulin H DNA: implications for the location of cis-acting elements required for somatic mutation. J. Exp. Med. 177, 797–809 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Klix, N. et al. Multiple sequences from downstream of the Jκ cluster can combine to recruit somatic hypermutation to a heterologous, upstream mutation domain. Eur. J. Immunol. 28, 317–326 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Michael, N. et al. The E box motif CAGGTG enhances somatic hypermutation without enhancing transcription. Immunity 19, 235–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Reynaud, C.A., Aoufouchi, S., Faili, A. & Weill, J.C. What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat. Immunol. 4, 631–638 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, C.L., Harper, R.A. & Wabl, M. Genome-wide somatic hypermutation. Proc. Natl. Acad. Sci. USA 101, 7352–7356 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gordon, M.S., Kanegai, C.M., Doerr, J.R. & Wall, R. Somatic hypermutation of the B cell receptor genes B29 (Igβ, CD79b) and mb1 (Igα, CD79a). Proc. Natl. Acad. Sci. USA 100, 4126–4131 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl. Acad. Sci. USA 95, 11816–11821 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Lebecque, S.G. & Gearhart, P.J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is approximately 1 kb from V(D)J gene. J. Exp. Med. 172, 1717–1727 (1990).

    Article  CAS  PubMed  Google Scholar 

  91. Bradney, C. et al. Regulation of E2A activities by histone acetyltransferases in B lymphocyte development. J. Biol. Chem. 278, 2370–2376 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Daniels, G.A. & Lieber, M.R. RNA:DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regulation of class switch recombination. Nucleic Acids Res. 23, 5006–5011 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mizuta, R. et al. Molecular visualization of immunoglobulin switch region RNA/DNA complex by atomic force microscope. J. Biol. Chem. 278, 4431–4434 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Reaban, M.E. & Griffin, J.A. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature 348, 342–344 (1990).

    Article  CAS  PubMed  Google Scholar 

  95. Tian, M. & Alt, F.W. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J. Biol. Chem. 275, 24163–24172 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Yu, K., Chedin, F., Hsieh, C.L., Wilson, T.E. & Lieber, M.R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Shinkura, R. et al. The influence of transcriptional orientation on endogenous switch region function. Nat. Immunol. 4, 435–441 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Zarrin, A.A. et al. An evolutionarily conserved target motif for immunoglobulin class-switch recombination. Nat. Immunol. 5, 1275–1281 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Tashiro, J., Kinoshita, K. & Honjo, T. Palindromic but not G-rich sequences are targets of class switch recombination. Int. Immunol. 13, 495–505 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Lee, C.G. et al. Quantitative regulation of class switch recombination by switch region transcription. J. Exp. Med. 194, 365–374 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Machida, K. et al. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc. Natl. Acad. Sci. USA 101, 4262–4267 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. He, B., Raab-Traub, N., Casali, P. & Cerutti, A. EBV-encoded latent membrane protein 1 cooperates with BAFF/BLyS and APRIL to induce T cell-independent Ig heavy chain class switching. J. Immunol. 171, 5215–5224 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Fagarasan, T. Okazaki, M. Nishikori, D. Yabe, N. Yamamoto, N. Begum, A. Kotani, I. Okazaki, J. Wang for critical reading of the manuscript, and Y. Shiraki and T. Nishikawa for support in preparing the manuscript. Supported by the Ministry of Education, Science, Sports, and Culture of Japan (Center of Excellence 12CE2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasuku Honjo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honjo, T., Nagaoka, H., Shinkura, R. et al. AID to overcome the limitations of genomic information. Nat Immunol 6, 655–661 (2005). https://doi.org/10.1038/ni1218

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing