Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eruption style at Kīlauea Volcano in Hawai‘i linked to primary melt composition

Abstract

Explosive eruptions at basaltic volcanoes have been linked to gas segregation from magmas at shallow depths in the crust. The composition of primary melts formed at greater depths was thought to have little influence on eruptive style. Ocean island basaltic volcanoes are the product of melting of a geochemically heterogeneous mantle plume and are expected to give rise to heterogeneous primary melts. This range in primary melt composition, particularly with respect to the volatile components, will profoundly influence magma buoyancy, storage and eruption style. Here we analyse the geochemistry of a suite of melt inclusions from 25 historical eruptions at the ocean island volcano of Kīlauea, Hawai‘i, over the past 600 years. We find that more explosive styles of eruption at Kīlauea Volcano are associated statistically with more geochemically enriched primary melts that have higher volatile concentrations. These enriched melts ascend faster and retain their primary nature, undergoing little interaction with the magma reservoir at the volcano’s summit. We conclude that the eruption style and magma-supply rate at Kīlauea are fundamentally linked to the geochemistry of the primary melts formed deep below the volcano. Magmas might therefore be predisposed towards explosivity right at the point of formation in their mantle source region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial and temporal context of the study.
Figure 2: Compositional relationship between melt inclusions, host olivines and carrier liquids.
Figure 3: Variations in melt inclusion compositions between different eruptive styles.
Figure 4: Schematic diagram to show how primary melt compositions may be linked to eruption style.

Similar content being viewed by others

References

  1. Head, J. W. & Wilson, L. Lava fountain heights at Pu’u ’O’o, Kīlauea, Hawaii: Indicators of amount and variations of exsolved magma volatiles. J. Geophys. Res. 92, 13715–13719 (1987).

    Article  Google Scholar 

  2. Jaupart, C. & Vergniolle, S. Laboratory models of Hawaiian and Strombolian eruptions. Nature 331, 58–60 (1988).

    Article  Google Scholar 

  3. Pietruszka, A. J. & Garcia, M. O. A rapid fluctuation in the mantle source and melting history of Kīlauea Volcano inferred from the geochemistry of its historical summit lavas (1790–1982). J. Petrol. 40, 1321–1342 (1999).

    Article  Google Scholar 

  4. Garcia, M. O., Pietruszka, A. J. & Rhodes, J. M. A petrologic perspective of Kīlauea Volcano’s summit magma reservoir. J. Petrol. 44, 2313–2339 (2003).

    Article  Google Scholar 

  5. Marske, J. P., Garcia, M. O., Pietruszka, A. J., Rhodes, J. M. & Norman, M. D. Geochemical variations during Kīlauea’s Pu‘u ‘Ō‘ō eruption reveal a fine-scale mixture of mantle heterogeneities within the hawaiian plume. J. Petrol. 49, 1297–1318 (2008).

    Article  Google Scholar 

  6. Dixon, J. E. & Clague, D. A. Volatiles in basaltic glasses from loihi seamount, Hawaii: evidence for a relatively dry plume component. J. Petrol. 42, 627–654 (2001).

    Article  Google Scholar 

  7. Hauri, E. H. Major-element variability in the Hawaiian mantle plume. Nature 382, 415–419 (1996).

    Article  Google Scholar 

  8. Lassiter, J. & Hauri, E. Osmium-isotope variations in Hawaiian lavas: Evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet. Sci. Lett. 164, 483–496 (1998).

    Article  Google Scholar 

  9. Dixon, J. E., Clague, D. A., Wallace, P. & Poreda, R. Volatiles in alkalic basalts form the North Arch Volcanic Field, Hawaii: Extensive degassing of deep submarine-erupted alkalic series lavas. J. Petrol. 38, 911–939 (1997).

    Article  Google Scholar 

  10. Anderson, A. T. CO2 and the eruptibility of picrite and komatiite. Lithos 34, 19–25 (1995).

    Article  Google Scholar 

  11. Helz, R. T. in Magmatic Processes: Physiochemical Principles (ed Mysen, B. O.) 241–258 (Geochem. Soc. Spec. Publ. 1, 1987).

    Google Scholar 

  12. Costa, F. & Dungan, M. Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 33, 837–840 (2005).

    Article  Google Scholar 

  13. Harris, D. M. & Anderson, A. T. Concentrations, sources, and losses of H2O, CO2, and S in Kilauean basalt. Geochim. Cosmochim. Acta 47, 1139–1150 (1983).

    Article  Google Scholar 

  14. Anderson, A. T. & Brown, G. G. CO2 contents and formation pressures of some Kilauean melt inclusions. Am. Mineral. 78, 794–803 (1993).

    Google Scholar 

  15. Wallace, P. J. & Anderson, A. T. Effects of eruption and lava drainback on the H2O contents of basaltic magmas at Kīlauea Volcano. Bull. Volcanol. 59, 327–344 (1998).

    Article  Google Scholar 

  16. Hauri, E. SIMS analysis of volatiles in silicate glasses, 2: Isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183, 115–141 (2002).

    Article  Google Scholar 

  17. Newman, S. & Lowenstern, J. B. VolatileCalc: A silicate melt–H2O–CO2 solution model written in visual basic for excel. Comput. Geosci. 28, 597–604 (2002).

    Article  Google Scholar 

  18. Gerlach, T. M. & Graeber, E. J. Volatile budget of Kīlauea volcano. Nature 313, 273–277 (1985).

    Article  Google Scholar 

  19. Dixon, J. E., Clague, D. A. & Stolper, E. M. Degassing history of water, sulfur, and carbon in submarine lavas from Kīlauea Volcano, Hawaii. J. Geol. 99, 371–394 (1991).

    Article  Google Scholar 

  20. Garcia, M. O., Muenow, D. W., Aggrey, K. E. & O’Neil, J. R. Major element, volatile, and stable isotope geochemistry of Hawaiian submarine tholeiitic glasses. J. Geophy. Res. 94, 10525–10538 (1989).

    Article  Google Scholar 

  21. Kent, A. J. R. et al. Widespread assimilation of a seawater-derived component at Loihi Seamount, Hawaii. Geochim. Cosmochim. Acta 63, 2749–2761 (1999).

    Article  Google Scholar 

  22. Sobolev, A. Melt inclusions in minerals as a source of principle petrological information. Petrology 4, 209–220 (1996).

    Google Scholar 

  23. Maclennan, J. Concurrent mixing and cooling of melts under Iceland. J. Petrol. 49, 1931–1953 (2008).

    Article  Google Scholar 

  24. Kent, A. J. & Elliott, T. R. Melt inclusions from Marianas arc lavas: Implications for the composition and formation of island arc magmas. Chem. Geol. 183, 263–286 (2002).

    Article  Google Scholar 

  25. Dixon, J. E. Degassing of alkalic basalts. Am. Mineral. 82, 368–378 (1997).

    Article  Google Scholar 

  26. Steele-Macinnis, M., Esposito, R. & Bodnar, R. J. Thermodynamic model for the effect of post-entrapment crystallization on the H2O–CO2 systematics of vapor-saturated, silicate melt inclusions. J. Petrol. 52, 2461–2482 (2011).

    Article  Google Scholar 

  27. Lloyd, A. S. et al. Volatile loss from melt inclusions in pyroclasts of differing sizes. Contr. Mineral. Petrol. 165, 129–153 (2013).

    Article  Google Scholar 

  28. Gaetani, G. A., O’Leary, J. A., Shimizu, N., Bucholz, C. E. & Newville, M. Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40, 915–918 (2012).

    Article  Google Scholar 

  29. Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002).

    Article  Google Scholar 

  30. Roggensack, K., Hervig, R. L., McKnight, S. B. & Williams, S. N. Explosive basaltic volcanism from Cerro Negro volcano: influence of volatiles on eruptive style. Science 277, 1639–1642 (1997).

    Article  Google Scholar 

  31. Gerlach, T. M., McGee, K. A., Elias, T., Sutton, A. J. & Doukas, M. P. Carbon dioxide emission rate of Kīlauea Volcano: Implications for primary magma and the summit reservoir. J. Geophy. Res. 107, ECV 3 (2002).

    Article  Google Scholar 

  32. Danyushevsky, L. V., Eggins, S. M., Falloon, T. J. & Christie, D. M. H2O abundance in depleted to moderately enriched mid-ocean ridge magmas; Part I: Incompatible behaviour, implications for mantle storage, and origin of regional variations. J. Petrol. 41, 1329–1364 (2000).

    Article  Google Scholar 

  33. Cartigny, P., Pineau, F., Aubaud, C. & Javoy, M. Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H2O/Ce, δ D, CO2/Nb) in the North Atlantic mantle (14° N and 34° N). Earth Planet. Sci. Lett. 265, 672–685 (2008).

    Article  Google Scholar 

  34. Hauri, E., Gronvold, K., Oskarsson, N. & McKenzie, D. Abundance of carbon in the Icelandic mantle: Constraints From melt inclusions. American Geophysical Union, Spring Meeting 2002, abstr. V51D-03 (2002)

  35. Sarda, P. & Graham, D. Mid-ocean ridge popping rocks: Implications for degassing at ridge crests. Earth Planet. Sci. Lett. 97, 268–289 (1990).

    Article  Google Scholar 

  36. Danyushevsky, L. V., Della-Pasqua, F. N. & Sokolov, S. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: Petrological implications. Contrib. Mineral. Petrol. 138, 68–83 (2000).

    Article  Google Scholar 

  37. Dixon, J. E., Stolper, E. & Delaney, J. R. Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses. Earth Planet. Sci. Lett. 90, 87–104 (1988).

    Article  Google Scholar 

  38. Wallace, P. J. Water and partial melting in mantle plumes: Inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas. Geophys. Res. Lett. 25, 3639–3642 (1998).

    Article  Google Scholar 

  39. Clague, D. A., Weber, W. S. & Dixon, J. E. Picritic glasses from Hawaii. Nature 353, 553–556 (1991).

    Article  Google Scholar 

  40. Ryan, M. P. The mechanics and three-dimensional internal structure of active magmatic systems: Kīlauea Volcano, Hawaii. J. Geophys. Res. 93, 4213–4248 (1988).

    Article  Google Scholar 

  41. Danyushevsky, L. V. & Plechov, P. Petrolog3: Integrated software for modeling crystallization processes. Geochem. Geophys. Geosys. 12, Q07021 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Clague for advice and comments on our manuscript, which improved it immensely. This work was financially supported by the Natural Environment Research Council (NERC), UK: I.R.S. acknowledges a NERC studentship. M.E. acknowledges a NERC urgency grant NE/G001537/1 and a NERC ion probe facility grant IMF376/0509. I.S. acknowledges a USGS Jack Kleinman Grant for Volcano Research. We thank J. Kauahikaua and the staff of the Hawaiian Volcano Observatory for allowing us access and providing logistical support for our fieldwork. In Edinburgh, R. Hinton and C-J. de Hoog assisted with the ion probe measurements. In Cambridge, J. Day, C. Petrone, M. Walker and I. Buisman assisted with sample preparation and analysis.

Author information

Authors and Affiliations

Authors

Contributions

I.R.S., D.A.S. and B.F.H. collected the samples. I.R.S. prepared and analysed the samples. All authors contributed to data interpretation.

Corresponding author

Correspondence to M. Edmonds.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1330 kb)

Supplementary Information

Supplementary Information (XLSX 996 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sides, I., Edmonds, M., Maclennan, J. et al. Eruption style at Kīlauea Volcano in Hawai‘i linked to primary melt composition. Nature Geosci 7, 464–469 (2014). https://doi.org/10.1038/ngeo2140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing