Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydrogen generation from low-temperature water–rock reactions

Abstract

Hydrogen is commonly produced during the high-temperature hydration of mafic and ultramafic rocks, owing to the oxidation of reduced iron present in the minerals. Hydrothermal hydrogen is known to sustain microbial communities in submarine vent and terrestrial hot-spring systems. However, the rates and mechanisms of hydrogen generation below temperatures of 150 °C are poorly constrained. As such, the existence and extent of hydrogen-fuelled ecosystems in subsurface terrestrial and oceanic aquifers has remained uncertain. Here, we report results from laboratory experiments in which we reacted ground ultramafic and mafic rocks and minerals—specifically peridotite, pyroxene, olivine and magnetite—with anoxic fluids at 55 and 100 °C, and monitored hydrogen gas production. We used synchrotron-based micro-X-ray fluorescence and X-ray absorption near-edge structure spectroscopy to identify changes in the speciation of iron in the materials. We report a strong correlation between molecular hydrogen generation and the presence of spinel phases—oxide minerals with the general formula [M2+M23+]O4 and a cubic crystal structure—in the reactants. We also identify Fe(III)-(hydr)oxide reaction products localized on the surface of the spinel phases, indicative of iron oxidation. We propose that the transfer of electrons between Fe(II) and water adsorbed to the spinel surfaces promotes molecular hydrogen generation at low temperatures. We suggest that these localized sites of hydrogen generation in ultramafic aquifers in the oceanic and terrestrial crust could support hydrogen-based microbial life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hydrogen production from water–rock reactions at 55 and 100 °C.
Figure 2: Distribution of minerals in the fayalite experiment reacted at 100 °C.
Figure 3: Geochemical maps of San Carlos peridotite and petedunnite reacted at 100 °C.
Figure 4: Schematic representation of spinel-surface-promoted H2 generation.

Similar content being viewed by others

References

  1. Schrenk, M. O., Kelley, D. S., Bolton, S. A. & Baross, J. A. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ. Microbiol. 6, 1086–1095 (2004).

    Article  Google Scholar 

  2. Kelley, D. S. et al. A serpentinite-hosted ecosystem: The lost city hydrothermal field. Science 307, 1428–1434 (2005).

    Article  Google Scholar 

  3. Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P. & Holm, N. Geochemistry of high H-2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36 degrees 14’N, MAR). Chem. Geol. 191, 345–359 (2002).

    Article  Google Scholar 

  4. Flores, G. E. et al. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environ. Microbiol. 13, 2158–2171 (2011).

    Article  Google Scholar 

  5. Moody, J. B. Serpentinization: A review. Lithos 9, 125–138 (1976).

    Article  Google Scholar 

  6. Seyfried, W. E., Foustoukos, D. I. & Fu, Q. Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200 °C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges. Geochim. Cosmochim. Acta 71, 3872–3886 (2007).

    Article  Google Scholar 

  7. McCollom, T. M. & Bach, W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta 73, 856–875 (2009).

    Article  Google Scholar 

  8. Klein, F. et al. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15 N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 73, 6868–6893 (2009).

    Article  Google Scholar 

  9. Jones, L. C., Rosenbauer, R., Goldsmith, J. I. & Oze, C. Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts. Geophys. Res. Lett. 37, L14306 (2010).

    Google Scholar 

  10. Malvoisin, B., Brunet, F., Carlut, J., Roumejon, S. & Cannat, M. Serpentinization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration. J. Geophys. Res. 117, B04102 (2012).

    Google Scholar 

  11. Takai, K. et al. Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl Acad. Sci. USA 105, 10949–10954 (2008).

    Article  Google Scholar 

  12. Barnes, I. & O’Neil, J. R. The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, western United States. Geol, Soc. Amer. Bull. 80, 1947–1960 (1969).

    Article  Google Scholar 

  13. Proskurowski, G., Lilley, M. D., Kelley, D. S. & Olson, E. J. Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer. Chem. Geol. 229, 331–343 (2006).

    Article  Google Scholar 

  14. Barnes, I., O’Neil, J. R. & Trescases, J-J. Present day serpentinization in New Caledonia, Oman and Yugoslavia. Geochim. Cosmochim. Acta 42, 144–145 (1978).

    Article  Google Scholar 

  15. Hoehler, T. M. Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology 2, 205–215 (2004).

    Article  Google Scholar 

  16. Nealson, K. H., Inagaki, F. & Takai, K. Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? Trends Microbiol. 13, 405–410 (2005).

    Article  Google Scholar 

  17. Evans, B. W., Kuehner, S. M. & Chopelas, A. Magnetite-free, yellow lizardite serpentinization of olivine websterite, Canyon Mountain complex, NE Oregon. Am. Miner. 94, 1731–1734 (2009).

    Article  Google Scholar 

  18. Stevens, T. O. & McKinley, J. P. Abiotic controls on H-2 production from basalt-water reactions and implications for aquifer biogeochemistry. Environ. Sci. Technol. 34, 826–831 (2000).

    Article  Google Scholar 

  19. Neubeck, A., Duc, N. T., Bastviken, D., Crill, P. & Holm, N. G. Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70 °C. Geochem. Trans. 12, 6 (2011).

    Article  Google Scholar 

  20. Parkes, R. J. et al. Prokaryotes stimulate mineral H2 formation for the deep biosphere and subsequent thermogenic activity. Geology 39, 219–222 (2011).

    Article  Google Scholar 

  21. Olsson, J. et al. Olivine reactivity with CO2 and H2O on a microscale: Implications for carbon sequestration. Geochim. Cosmochim. Acta 77, 86–97 (2012).

    Article  Google Scholar 

  22. Mancey, D., Shoesmith, D., Lipkowski, J., McBride, A. & Noel, J. An electrochemical investigation of the dissolution of magnetite in acidic electrolytes. J. Electrochem. Soc. 140, 637–642 (1993).

    Article  Google Scholar 

  23. Parkinson, G. S., Novotny, Z., Jacobson, P., Schmid, M. & Diebold, U. Room temperature water splitting at the surface of magnetite RID A-3681-2010. J. Am. Chem. Soc. 133, 12650–12655 (2011).

    Article  Google Scholar 

  24. Hamilton, W. Neutron diffraction investigation of the 119K Transition in Magnetite. Phys. Rev. 110, 1050–1057 (1958).

    Article  Google Scholar 

  25. Balko, B. & Hoy, G. Selective excitation double Mossbauer studies (SEDM) of electron hopping. Physica B C 86, 953–954 (1977).

    Article  Google Scholar 

  26. Skomurski, F. N., Kerisit, S. & Rosso, K. M. Structure, charge distribution, and electron hopping dynamics in magnetite (Fe3O4) (100) surfaces from first principles. Geochim. Cosmochim. Acta 74, 4234–4248 (2010).

    Article  Google Scholar 

  27. Peterson, M., Brown, G., Parks, G. & Stein, C. Differential redox and sorption of Cr(III/VI) on natural silicate and oxide minerals: EXAFS and XANES results. Geochim. Cosmochim. Acta 61, 3399–3412 (1997).

    Article  Google Scholar 

  28. White, A. & Peterson, M. Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides. Geochim. Cosmochim. Acta 60, 3799–3814 (1996).

    Article  Google Scholar 

  29. Shipley, H. J., Yean, S., Kan, A. T. & Tomson, M. B. Adsorption of arsenic to magnetite nanoparticles: Effect of particle concentration, pH, ionic strength, and temperature. Environ. Toxicol. Chem. 28, 509–515 (2009).

    Article  Google Scholar 

  30. Foustoukos, D. & Seyfried, W. Hydrocarbons in hydrothermal vent fluids: The role of chromium-bearing catalysts. Science 304, 1002–1005 (2004).

    Article  Google Scholar 

  31. Fu, Q., Lollar, B. S., Horita, J., Lacrampe-Couloume, G. & Seyfried, W. E. Abiotic formation of hydrocarbons under hydrothermal conditions: Constraints from chemical and isotope data. Geochim. Cosmochim. Acta 71, 1982–1998 (2007).

    Article  Google Scholar 

  32. Joseph, Y., Kuhrs, C., Ranke, W. & Weiss, W. Adsorption of water on Fe3O4(111) studied by photoelectron and thermal desorption spectroscopy. Surf. Sci. 433, 114–118 (1999).

    Article  Google Scholar 

  33. Kendelewicz, T. et al. Reaction of water with the (100) and (111) surfaces of Fe3O4 . Surf. Sci. 453, 32–46 (2000).

    Article  Google Scholar 

  34. Petitto, S. C., Tanwar, K. S., Ghose, S. K., Eng, P. J. & Trainor, T. P. Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction. Surf. Sci. 604, 1082–1093 (2010).

    Article  Google Scholar 

  35. Williams, A. & Scherer, M. Spectroscopic evidence for Fe(II)–Fe(III) electron transfer at the iron oxide-water interface. Environ. Sci. Technol. 38, 4782–4790 (2004).

    Article  Google Scholar 

  36. Silvester, E. et al. Redox potential measurements and Mossbauer spectrometry of Fe-II adsorbed onto Fe-III (oxyhydr)oxides RID A-1353-2010. Geochim. Cosmochim. Acta 69, 4801–4815 (2005).

    Article  Google Scholar 

  37. Tanwar, K. S., Petitto, S. C., Ghose, S. K., Eng, P. J. & Trainor, T. P. Structural study of Fe(II) adsorption on hematite(1(1)over-bar02). Geochim. Cosmochim. Acta 72, 3311–3325 (2008).

    Article  Google Scholar 

  38. Rosso, K. M., Yanina, S. V., Gorski, C. A., Larese-Casanova, P. & Scherer, M. M. Connecting observations of hematite (alpha-Fe(2)O(3)) growth catalyzed by Fe(II). Environ. Sci. Technol. 44, 61–67 (2010).

    Article  Google Scholar 

  39. Catalano, J. G., Fenter, P., Park, C., Zhang, Z. & Rosso, K. M. Structure and oxidation state of hematite surfaces reacted with aqueous Fe(II) at acidic and neutral pH RID A-8544-2008. Geochim. Cosmochim. Acta 74, 1498–1512 (2010).

    Article  Google Scholar 

  40. Mckibben, M. & Barnes, H. Oxidation of pyrite in low-temperature acidic solutions—Rate laws and surface textures. Geochim. Cosmochim. Acta 50, 1509–1520 (1986).

    Article  Google Scholar 

  41. White, A., Peterson, M. & Hochella, M. Electrochemistry and dissolution kinetics of magnetite and ilmenite. Geochim. Cosmochim. Acta 58, 1859–1875 (1994).

    Article  Google Scholar 

  42. Bearat, H. et al. Carbon sequestration via aqueous olivine mineral carbonation: Role of passivating layer formation. Environ. Sci. Technol. 40, 4802–4808 (2006).

    Article  Google Scholar 

  43. Schott, J., Pokrovsky, O. S. & Oelkers, E. H. in Thermodynamics and Kinetics of Water–Rock Interaction Vol. 70 (eds Oelkers, E. & Schott, J.) 207–258 (Mineralogical Soc. Amer., 2009).

    Book  Google Scholar 

  44. White, A. & Yee, A. Aqueous oxidation–reduction kinetics associated with coupled electron cation transfer from iron-containing silicates at 25 °C. Geochim. Cosmochim. Acta 49, 1263–1275 (1985).

    Article  Google Scholar 

  45. Menez, B., Pasini, V. & Brunelli, D. Life in the hydrated suboceanic mantle. Nature Geosci. 5, 133–137 (2012).

    Article  Google Scholar 

  46. Ehlmann, B. L., Mustard, J. F. & Murchie, S. L. Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 37, L06201 (2010).

    Article  Google Scholar 

  47. Hoal, K. O. et al. Research in quantitative mineralogy: Examples from diverse applications. Miner. Eng. 22, 402–408 (2009).

    Article  Google Scholar 

  48. Mayhew, L. E., Webb, S. M. & Templeton, A. S. Microscale imaging and identification of Fe speciation and distribution during fluid–mineral reactions under highly reducing conditions. Environ. Sci. Technol. 45, 4468–4474 (2011).

    Article  Google Scholar 

  49. Webb, S. M. The MicroAnalysis Toolkit: X-ray fluorescence image processing software. AIP Conf. Proc. 1365, 196–199 (2011).

    Article  Google Scholar 

  50. Webb, S. M. SIXPack: A graphical user interface for XAS analysis using IFEFFIT. Phys. Scr. 2005, 1011–1014 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

G. Lau and E. Swanner participated in collection of reference spectra. We thank the Smithsonian National Museum of Natural History for minerals used as Fe model compounds. We acknowledge F. Luiszer, J. Drexler and P. Boni, at the University of Colorado-Boulder, for IC-OES, ICP-MS and electron microprobe analyses, and sample preparation work, respectively. We thank F. Majs (U. Alaska) for conducting XRD analyses. This work was directly supported by the David and Lucille Packard Foundation (A.S.T.) and a DOE Early Career grant (A.S.T.) (DE-SC0006886). Synchrotron analyses were conducted on beamlines 2-3, 11-2, and 4-1 at the Stanford Synchrotron Radiation Lightsource (SSRL), a national user facility operated by Stanford University on behalf of the Department of Energy, Office of Basic Energy Sciences, through the Structural Molecular Biology Program, supported by DOE Office of Biological and Environmental Research and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

L.E.M. and A.S.T. conceived of and designed the experiments. L.E.M. and E.T.E. assembled the experiments, conducted gas chromatography analyses, and sampled for aqueous, synchrotron and XRD analyses. L.E.M. and A.S.T. conducted synchrotron-based X-ray spectroscopy and microprobe mapping data collection. L.E.M. processed and analysed all data. L.E.M completed the data interpretation and wrote the manuscript with input and critical discussion from A.S.T., E.T.E., T.P.T. and T.M.M.

Corresponding author

Correspondence to L. E. Mayhew.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2123 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayhew, L., Ellison, E., McCollom, T. et al. Hydrogen generation from low-temperature water–rock reactions. Nature Geosci 6, 478–484 (2013). https://doi.org/10.1038/ngeo1825

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1825

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing