Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dichotomies in cancer research: some suggestions for a new synthesis

Abstract

Continuing high cancer incidence and mortality raise concern about the prevailing overall approach to the control of this disease. The purpose of this article is to elaborate on fundamental dichotomies between traditional and revisionist viewpoints and then to attempt a synthesis of these contrasting perspectives. Topics considered include the importance of controlling carcinogenesis in its earliest stages; consideration of epigenetic, as well as genetic, factors in cancer; development of appropriate genetic animal models of carcinogenesis; the need for multifunctional agents to prevent and treat cancer; and the limits of reductionism. The need for development of new preventive and therapeutic measures that will maintain quality of life, not merely extend life, is stressed. Finally, the importance of context in cancer biology is emphasized, as epitomized in Walt Whitman's famous quotation that “Nothing out of its place is good and nothing in its place is bad.”

Key Points

  • Prevention of early-stage disease should be emphasized rather than directing efforts only at treating end-stage disease

  • Epigenetics is equally important as genetics, and a greater appreciation of epigenetics is pivotal to our understanding the process of carcinogenesis

  • Multifactorial animal model experiments that utilize not only transgenic mouse models, but also classical carcinogenesis models that disrupt multiple genes, are more representative models of human carcinogenesis

  • The combination of monofunctional and multifunctional agents is needed for developing both preventive and therapeutic strategies

  • A reductionist approach does not encompass the complexity of carcinogenesis or its context; instead it should be recognized that cellular networks are highly interactive systems that respond rapidly to environmental perturbation

  • Observational and hypothesis-driven research are both required to encompass a holistic approach to our understanding of cancer

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Target illustrating the goals of the eminent Swiss engineer, Christian Menn, in his design of a new bridge.

Similar content being viewed by others

References

  1. (online December 2005) Cancer Trends Progress Report—2005 Update [http://progressreport.cancer.gov] (accessed 17 May 2006)

  2. Jemal A et al. (2006) Cancer statistics, 2006. CA Cancer J Clin 56: 106–130

    Article  PubMed  Google Scholar 

  3. Sporn MB (1996) The war on cancer. Lancet 347: 1377–1381

    Article  CAS  PubMed  Google Scholar 

  4. [No authors listed] (1999) Prevention of cancer in the next millennium: Report of the Chemoprevention Working Group to the American Association for Cancer Research. Cancer Res 59: 4743–4758

  5. Sporn MB and Liby KT (2005) Cancer chemoprevention: scientific promise, clinical uncertainty. Nat Clin Pract Oncol 2: 518–525

    Article  CAS  PubMed  Google Scholar 

  6. O'Shaughnessy JA et al. (2002) Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development. Clin Cancer Res 8: 314–346

    PubMed  Google Scholar 

  7. Fisher B et al. (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90: 1371–1388

    Article  CAS  PubMed  Google Scholar 

  8. Martino S et al. (2004) Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst 96: 1751–1761

    Article  CAS  PubMed  Google Scholar 

  9. Fisher B et al. (2005) Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 97: 1652–1662

    Article  CAS  PubMed  Google Scholar 

  10. Hruban RH et al. (2005) Identification and analysis of precursors to invasive pancreatic cancer. Methods Mol Med 103: 1–13

    PubMed  Google Scholar 

  11. Maitra A et al. (2005) Precursors to invasive pancreatic cancer. Adv Anat Pathol 12: 81–91

    Article  PubMed  Google Scholar 

  12. Hingorani SR et al. (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4: 437–450

    Article  CAS  PubMed  Google Scholar 

  13. Urbina I (11 January 2006) In the treatment of diabetes, success often does not pay. The New York Times 155: A1, A26–A27

    Google Scholar 

  14. Feinberg AP and Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4: 143–153

    Article  CAS  PubMed  Google Scholar 

  15. Lund AH and van Lohuizen M (2004) Epigenetics and cancer. Genes Dev 18: 2315–2335

    Article  CAS  PubMed  Google Scholar 

  16. Laird PW (2005) Cancer epigenetics. Hum Mol Genet 14 (Spec No 1): R65–R76

    Article  CAS  Google Scholar 

  17. Jones PA (2005) Overview of cancer epigenetics. Semin Hematol 42 (Suppl 2): S3–S8

    Article  CAS  PubMed  Google Scholar 

  18. Rauscher FJ III (2005) It is time for a Human Epigenome Project. Cancer Res 65: 11229

    Article  CAS  PubMed  Google Scholar 

  19. Nathan C (2002) Points of control in inflammation. Nature 420: 846–852

    Article  CAS  PubMed  Google Scholar 

  20. Coussens LM and Werb Z (2002) Inflammation and cancer. Nature 420: 860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Balkwill F et al. (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7: 211–217

    Article  CAS  PubMed  Google Scholar 

  22. de Visser KE et al. (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6: 24–37

    Article  CAS  PubMed  Google Scholar 

  23. Clark WH Jr (1995) The nature of cancer: morphogenesis and progressive (self)-disorganization in neoplastic development and progression. Acta Oncol 34: 3–21

    Article  PubMed  Google Scholar 

  24. Grobstein C (1956) Inductive tissue interaction in development. Adv Cancer Res 4: 187–236

    Article  CAS  PubMed  Google Scholar 

  25. Grobstein C (1953) Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science 118: 52–55

    Article  CAS  PubMed  Google Scholar 

  26. Cunha GR et al. (1980) Induction of nuclear androgen-binding sites in epithelium of the embryonic urinary bladder by mesenchyme of the urogenital sinus of embryonic mice. Endocrinology 107: 1767–1770

    Article  CAS  PubMed  Google Scholar 

  27. Sakakura T et al. (1976) Mesenchyme-dependent morphogenesis and epithelium-specific cytodifferentiation in mouse mammary gland. Science 194: 1439–1441

    Article  CAS  PubMed  Google Scholar 

  28. Bissell MJ and Barcellos-Hoff MH (1987) The influence of extracellular matrix on gene expression: is structure the message? J Cell Sci Suppl 8: S327–S343

    Article  Google Scholar 

  29. Bissell MJ et al. (1982) How does the extracellular matrix direct gene expression? J Theor Biol 99: 31–68

    Article  CAS  PubMed  Google Scholar 

  30. Bhowmick NA et al. (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432: 332–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bissell MJ et al. (2005) Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harb Symp Quant Biol 70: 1–14

    Article  Google Scholar 

  32. Bates RR and Klein M (1966) Importance of a smooth surface in carcinogenesis by plastic film. J Natl Cancer Inst 37: 145–151

    CAS  PubMed  Google Scholar 

  33. Smela ME et al. (2001) The chemistry and biology of aflatoxin B1: from mutational spectrometry to carcinogenesis. Carcinogenesis 22: 535–545

    Article  CAS  PubMed  Google Scholar 

  34. Eaton DL and Gallagher EP (1994) Mechanisms of aflatoxin carcinogenesis. Annu Rev Pharmacol Toxicol 34: 135–172

    Article  CAS  PubMed  Google Scholar 

  35. Marnett LJ et al. (2003) Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J Clin Invest 111: 583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deininger M et al. (2005) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105: 2640–2653

    Article  CAS  PubMed  Google Scholar 

  37. Tripathy D (2005) Targeted therapies in breast cancer. Breast J 11 (Suppl 1): S30–S35

    Article  PubMed  Google Scholar 

  38. Mitelman F et al. (1994) Catalog of Chromosome Aberrations in Cancer, edn 5. New York: Wiley-Liss

    Google Scholar 

  39. Loeb LA et al. (2003) Multiple mutations and cancer. Proc Natl Acad Sci USA 100: 776–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rabbitts TH (1994) Chromosomal translocations in human cancer. Nature 372: 143–149

    Article  CAS  PubMed  Google Scholar 

  41. Gorre ME and Sawyers CL (2002) Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia. Curr Opin Hematol 9: 303–307

    Article  PubMed  Google Scholar 

  42. Jordan VC (2006) Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. Br J Pharmacol 147 (Suppl 1): S269–S276

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Suh N et al. (2001) Arzoxifene, a new selective estrogen receptor modulator for chemoprevention of experimental breast cancer. Cancer Res 61: 8412–8415

    CAS  PubMed  Google Scholar 

  44. Freemantle SJ et al. (2003) Retinoids in cancer therapy and chemoprevention: promise meets resistance. Oncogene 22: 7305–7315

    Article  CAS  PubMed  Google Scholar 

  45. Wu K et al. (2002) The retinoid X receptor-selective retinoid, LGD1069, prevents the development of estrogen receptor-negative mammary tumors in transgenic mice. Cancer Res 62: 6376–6380

    CAS  PubMed  Google Scholar 

  46. Suh N et al. (2002) Prevention and treatment of experimental breast cancer with the combination of a new selective estrogen receptor modulator, arzoxifene, and a new rexinoid, LG 100268. Clin Cancer Res 8: 3270–3275

    CAS  PubMed  Google Scholar 

  47. Yu X and Kensler T (2005) Nrf2 as a target for cancer chemoprevention. Mutat Res 591: 93–102

    Article  CAS  PubMed  Google Scholar 

  48. Darnell JE (2005) Validating Stat3 in cancer therapy. Nat Med 11: 595–596

    Article  CAS  PubMed  Google Scholar 

  49. Turkson J (2004) STAT proteins as novel targets for cancer drug discovery. Expert Opin Ther Targets 8: 409–422

    Article  CAS  PubMed  Google Scholar 

  50. Darnell JE Jr (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2: 740–749

    Article  CAS  PubMed  Google Scholar 

  51. Karin M and Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5: 749–759

    Article  CAS  PubMed  Google Scholar 

  52. Yates MS et al. (2006) Potent protection against aflatoxin-induced tumorigenesis through induction of nrf2-regulated pathways by the triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole. Cancer Res 66: 2488–2494

    Article  CAS  PubMed  Google Scholar 

  53. Giudice A and Montella M (2006) Activation of the Nrf2-ARE signaling pathway: a promising strategy in cancer prevention. Bioessays 28: 169–181

    Article  CAS  PubMed  Google Scholar 

  54. Jeong WS et al. (2006) Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Signal 8: 99–106

    Article  CAS  PubMed  Google Scholar 

  55. Kelly WK and Marks PA (2005) Drug insight: Histone deacetylase inhibitors—development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Pract Oncol 2: 150–157

    Article  CAS  PubMed  Google Scholar 

  56. Marquez VE et al. (2005) Zebularine: a unique molecule for an epigenetically based strategy in cancer chemotherapy. The magic of its chemistry and biology. Nucleosides Nucleotides Nucleic Acids 24: 305–318

    Article  CAS  PubMed  Google Scholar 

  57. Mintz B and Fleischman RA (1981) Teratocarcinomas and other neoplasms as developmental defects in gene expression. Adv Cancer Res 34: 211–278

    Article  CAS  PubMed  Google Scholar 

  58. Olive KP et al. (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119: 847–860

    Article  CAS  PubMed  Google Scholar 

  59. Lang GA et al. (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119: 861–872

    Article  CAS  PubMed  Google Scholar 

  60. Nilsson JA and Cleveland JL (2003) Myc pathways provoking cell suicide and cancer. Oncogene 22: 9007–9021

    Article  CAS  PubMed  Google Scholar 

  61. Aggarwal BB and Takada Y (2005) Pro-apototic and anti-apoptotic effects of tumor necrosis factor in tumor cells. Role of nuclear transcription factor NF-κB. Cancer Treat Res 126: 103–127

    Article  PubMed  Google Scholar 

  62. Wakefield LM and Roberts AB (2002) TGF-β signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12: 22–29

    Article  CAS  PubMed  Google Scholar 

  63. Siegel PM and Massague J (2003) Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer 3: 807–821

    Article  CAS  PubMed  Google Scholar 

  64. Rowland BD and Peeper DS (2006) KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6: 11–23

    Article  CAS  PubMed  Google Scholar 

  65. Smith CL and O'Malley BW (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25: 45–71

    Article  CAS  PubMed  Google Scholar 

  66. Strahl BD and Allis CD (2000) The language of covalent histone modifications. Nature 403: 41–45

    Article  CAS  PubMed  Google Scholar 

  67. Fischle W et al. (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425: 475–479

    Article  CAS  PubMed  Google Scholar 

  68. Janes KA et al. (2005) A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310: 1646–1653

    Article  CAS  PubMed  Google Scholar 

  69. Nelson DE et al. (2004) Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306: 704–708

    Article  CAS  PubMed  Google Scholar 

  70. Barrios-Rodiles M et al. (2005) High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307: 1621–1625

    Article  CAS  PubMed  Google Scholar 

  71. Colland F et al. (2004) Functional proteomics mapping of a human signaling pathway. Genome Res 14: 1324–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stelzl U et al. (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122: 957–968

    Article  CAS  PubMed  Google Scholar 

  73. Bouwmeester T et al. (2004) A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nat Cell Biol 6: 97–105

    Article  CAS  PubMed  Google Scholar 

  74. Sanchez C et al. (1999) Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an Internet database. Nucleic Acids Res 27: 89–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Davies H et al. (2005) Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res 65: 7591–7595

    Article  CAS  PubMed  Google Scholar 

  76. Moorehead A (1969) Darwin and the Beagle. New York: Harper & Row

    Google Scholar 

  77. Sporn MB (1991) Carcinogenesis and cancer: different perspectives on the same disease. Cancer Res 51: 6215–6218

    CAS  PubMed  Google Scholar 

  78. Haddow A (1972) Molecular repair, wound healing, and carcinogenesis: tumor production a possible overhealing? Adv Cancer Res 16: 181–234

    Article  CAS  PubMed  Google Scholar 

  79. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315: 1650–1659

    Article  CAS  PubMed  Google Scholar 

  80. Prestera T et al. (1993) The electrophile counterattack response: protection against neoplasia and toxicity. Adv Enzyme Regul 33: 281–296

    Article  CAS  PubMed  Google Scholar 

  81. Holtzclaw WD et al. (2004) Protection against electrophile and oxidative stress by induction of phase 2 genes: the quest for the elusive sensor that responds to inducers. Adv Enzyme Regul 44: 335–367

    Article  CAS  PubMed  Google Scholar 

  82. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3: 768–780

    Article  CAS  PubMed  Google Scholar 

  83. Sporn MB and Suh N (2002) Chemoprevention: an essential approach to controlling cancer. Nat Rev Cancer 2: 537–543

    Article  CAS  PubMed  Google Scholar 

  84. Dinkova-Kostova AT et al. (2005) Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc Natl Acad Sci USA 102: 4584–4589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liby K et al. (2005) The synthetic triterpenoids, CDDO and CDDO-imidazolide, are potent inducers of heme oxygenase-1 and Nrf2/ARE signaling. Cancer Res 65: 4789–4798

    Article  CAS  PubMed  Google Scholar 

  86. Doroshow JH (2006) Redox modulation of chemotherapy-induced tumor cell killing and normal tissue toxicity. J Natl Cancer Inst 98: 223–225

    Article  CAS  PubMed  Google Scholar 

  87. Nathan C and Goldberg FM (2005) Outlook: the profit problem in antibiotic R&D. Nat Rev Drug Discov 4: 887–891

    Article  CAS  PubMed  Google Scholar 

  88. Nathan C (2004) Antibiotics at the crossroads. Nature 431: 899–902

    Article  CAS  PubMed  Google Scholar 

  89. Zweig P (1985) The wound-dresser. In Walt Whitman, 143–157 (Ed Bloom H) New York: Chelsea House Publishers

    Google Scholar 

  90. Leaf C (2005) The law of unintended consequences. In Fortune, September 19 2005, 250–268

    Google Scholar 

  91. Hutchinson L and DeVita VT Jr (2005) Herceptin: HERalding a new era in breast cancer care but at what cost? Nat Clin Pract Oncol 2: 595

    Article  PubMed  Google Scholar 

  92. Berenson A (15 February 2006) A cancer drug shows promise, at a price that many can't pay. The New York Times 155: A1, C2

  93. Lyall S (16 February 2006) British clinic is allowed to deny medicine. The New York Times 155: A6

    Google Scholar 

  94. Billington DP (2003) The Art of Structural Design: A Swiss Legacy. New Haven: Princeton University Art Museum and Yale University Press.

    Google Scholar 

  95. McCarter R (2005) Louis Kahn. London and New York: Phaidon Press.

    Google Scholar 

Download references

Acknowledgements

I thank K Liby, L Wakefield, A Roberts, C Nathan, C Leaf, L Hutchinson, K McGaughy, and CDS for helpful comments and M Padgett for expert editorial assistance. This article is dedicated to C Everett Koop, true hero and outspoken champion of the cause of prevention of disease. Work supported by NIH grants, National Foundation for Cancer Research, members of the Dartmouth College Class of 1934, and Reata Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sporn, M. Dichotomies in cancer research: some suggestions for a new synthesis. Nat Rev Clin Oncol 3, 364–373 (2006). https://doi.org/10.1038/ncponc0536

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0536

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing