Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology Insight: querying the genome with microarrays—progress and hope for neurological disease

Abstract

The ability to perform large-scale analysis of the genome at the level of gene sequence, gene copy number and messenger RNA transcript expression characterizes the post-genomic era. In the past decade, the microarray-based approach has emerged as one of the major tools in this area of genome biology, contributing to advances in the understanding of Mendelian and complex neurological disorders. Despite technical issues regarding design, data analysis and validation that have to be addressed in the planning and interpretation of a microarray study, microarray-based approaches for studying transcript expression, single-nucleotide-polymorphism genotyping and gene resequencing are becoming more widely adopted. Genomic microarrays are providing an unprecedented opportunity to dissect the genetic risk for complex neurological disorders. Numerous clinical and preclinical applications are likely to dominate the ambitious microarray agenda within the next decade.

Key Points

  • Microarrays were introduced to the scientific community in the mid-1990s as a method for screening a very large number of transcripts simultaneously

  • In the nervous system, microarrays provide opportunities to study the genetic basis and pathogenesis of disorders that show Mendelian or complex patterns of inheritance, and to provide more accurate diagnosis and more effective therapy

  • Expression profiling in models of Huntington's disease has contributed to the characterization of pathogenic gene expression changes, and indicated that some steps of Huntington's disease pathogenesis are shared among other polyglutamine disorders

  • Complex neurological disorders that are being studied using microarrays include Alzheimer's disease, Parkinson's disease, autism, amyotrophic lateral sclerosis and multiple sclerosis

  • Microarray experiments require a large analytical and follow-up component, and therefore need to be approached with considerable commitment of time, expertise and resources

  • Neuro-oncology provides a model for the use of microarrays in characterizing patients by prognosis and treatment response

  • Genomic microarrays are now being developed to study disease-associated changes in DNA sequences

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microarray-based applications and neurological disorders.
Figure 2: Patient classification in neuro-oncology.
Figure 3: Gene resequencing.

Similar content being viewed by others

References

  1. Schena M et al. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470

    Article  CAS  PubMed  Google Scholar 

  2. Lockhart DJ et al. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14: 1675–1680

    Article  CAS  PubMed  Google Scholar 

  3. NIH Neuroscience Microarray Consortium [http://arrayconsortium.tgen.org]

  4. Ideker T (2004) Systems biology 101—what you need to know. Nat Biotechnol 22: 473–475

    Article  CAS  PubMed  Google Scholar 

  5. Karsten SL and Geschwind DH (2002) Gene expression analysis using cDNA microarrays. Curr Prot Neurosci 4.28 (Suppl 20): S4.28.1–S4.28.28

    Google Scholar 

  6. Geschwind DH (2003) DNA microarrays: translation of the genome from laboratory to clinic. Lancet Neurol 2: 275–282

    Article  CAS  PubMed  Google Scholar 

  7. Southern E et al. (1999) Molecular interactions on microarrays. Nat Genet 21: 5–9

    Article  CAS  PubMed  Google Scholar 

  8. Barlow C and Lockhart DJ (2002) DNA arrays and neurobiology—what's new and what's next? Curr Opin Neurobiol 12: 554–561

    Article  CAS  PubMed  Google Scholar 

  9. Mirnics K and Pevsner J (2004) Progress in the use of microarray technology to study the neurobiology of disease. Nat Neurosci 7: 434–439

    Article  CAS  PubMed  Google Scholar 

  10. Stoughton RB (2005) Applications of DNA microarrays in biology. Annu Rev Biochem 74: 53–82

    Article  CAS  PubMed  Google Scholar 

  11. Pinkel D and Albertson DG (2005) Comparative genomic hybridization. Annu Rev Genomics Hum Genet 6: 331–354

    Article  CAS  PubMed  Google Scholar 

  12. Kennedy GC et al. (2003) Large-scale genotyping of complex DNA. Nat Biotechnol 21: 1233–1237

    Article  CAS  PubMed  Google Scholar 

  13. Hacia JG and Collins FS (1999) Mutational analysis using oligonucleotide microarrays. J Med Genet 36: 730–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Geschwind DH (2000) Mice, microarrays, and the genetic diversity of the brain. Proc Natl Acad Sci USA 97: 10676–10678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kita H et al. (2002) Modulation of polyglutamine-induced cell death by genes identified by expression profiling. Hum Mol Genet 11: 2279–2287

    Article  CAS  PubMed  Google Scholar 

  16. Sipione S et al. (2002) Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. Hum Mol Genet 11: 1953–1965

    Article  CAS  PubMed  Google Scholar 

  17. Luthi-Carter R et al. (2002) Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects. Hum Mol Genet 11: 1927–1937

    Article  CAS  PubMed  Google Scholar 

  18. Ross CA (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron 35: 819–822

    Article  CAS  PubMed  Google Scholar 

  19. Morton AJ et al. (2005) A combination drug therapy improves cognition and reverses gene expression changes in a mouse model of Huntington's disease. Eur J Neurosci 21: 855–870

    Article  PubMed  Google Scholar 

  20. Ferrante RJ et al. (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J Neurosci 23: 9418–9427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Strand AD et al. (2005) Gene expression in Huntington's disease skeletal muscle: a potential biomarker. Hum Mol Genet 14: 1863–1876

    Article  CAS  PubMed  Google Scholar 

  22. Serra HG et al. (2004) Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Hum Mol Genet 13: 2535–2543

    Article  CAS  PubMed  Google Scholar 

  23. Colantuoni C et al. (2001) Gene expression profiling in postmortem Rett syndrome brain: differential gene expression and patient classification. Neurobiol Dis 8: 847–865

    Article  CAS  PubMed  Google Scholar 

  24. Tudor M et al. (2002) Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci USA 99: 15536–15541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Traynor J et al. (2002) Gene expression patterns vary in clonal cell cultures from Rett syndrome females with eight different MECP2 mutations. BMC Med Genet 3: 12

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brown V et al. (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107: 477–487

    Article  CAS  PubMed  Google Scholar 

  27. Kennan A et al. (2002) Identification of an IMPDH1 mutation in autosomal dominant retinitis pigmentosa (RP10) revealed following comparative microarray analysis of transcripts derived from retinas of wild-type and Rho−/− mice. Hum Mol Genet 11: 547–557

    Article  CAS  PubMed  Google Scholar 

  28. Watase K and Zoghbi HY (2003) Modelling brain diseases in mice: the challenges of design and analysis. Nat Rev Genet 4: 296–307

    Article  CAS  PubMed  Google Scholar 

  29. Karsten SL and Geschwind DH (2005) Exercise your amyloid. Cell 120: 572–574

    Article  CAS  PubMed  Google Scholar 

  30. Middleton FA et al. (2002) Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 22: 2718–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mirnics K et al. (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28: 53–67

    Article  CAS  PubMed  Google Scholar 

  32. Mirnics ZK et al. (2003) DNA microarray profiling of developing PS1-deficient mouse brain reveals complex and coregulated expression changes. Mol Psychiatry 8: 863–878

    Article  CAS  PubMed  Google Scholar 

  33. Mirnics K et al. (2005) Presenilin-1-dependent transcriptome changes. J Neurosci 25: 1571–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lazarov O et al. (2005) Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell 120: 701–713

    Article  CAS  PubMed  Google Scholar 

  35. Small SA et al. (2005) Model-guided microarray implicates the retromer complex in Alzheimer's disease. Ann Neurol 58: 909–919

    Article  CAS  PubMed  Google Scholar 

  36. Whitney LW et al. (1999) Analysis of gene expression in mutiple sclerosis lesions using cDNA microarrays. Ann Neurol 46: 425–428

    Article  CAS  PubMed  Google Scholar 

  37. Whitney LW et al. (2001) Microarray analysis of gene expression in multiple sclerosis and EAE identifies 5-lipoxygenase as a component of inflammatory lesions. J Neuroimmunol 121: 40–48

    Article  CAS  PubMed  Google Scholar 

  38. Lock C et al. (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8: 500–508

    Article  CAS  PubMed  Google Scholar 

  39. Geschwind DH et al. (2001) A genetic analysis of neural progenitor differentiation. Neuron 29: 325–339

    Article  CAS  PubMed  Google Scholar 

  40. van Steensel B (2005) Mapping of genetic and epigenetic regulatory networks using microarrays. Nat Genet 37 (Suppl): S18–S24

    Article  CAS  PubMed  Google Scholar 

  41. Oldham MC et al. (2005) Network analysis of gene expression in human and chimpanzee brains identifies functional modules [abstract #409.8] Society for Neuroscience 35th Annual Meeting: 2005 November 12–16. Washington, DC: Society for Neuroscience

    Google Scholar 

  42. Zhang B and Horvath SA (2005) A general framework for weighted gene co-expression network analysis [article #17]. Statistical Applications in Genetics and Molecular Biology 4

  43. Freije WA et al. (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer Res 64: 6503–6510

    Article  CAS  PubMed  Google Scholar 

  44. Mischel PS et al. (2004) DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci 5: 782–792

    Article  CAS  PubMed  Google Scholar 

  45. Watts JA et al. (2002) Gene expression phenotype in heterozygous carriers of ataxia telangiectasia. Am J Hum Genet 71: 791–800

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tang Y et al. (2001) Blood genomic responses differ after stroke, seizures, hypoglycemia, and hypoxia: blood genomic fingerprints of disease. Ann Neurol 50: 699–707

    Article  CAS  PubMed  Google Scholar 

  47. Tang Y et al. (2005) Blood gene expression profiling of neurologic diseases: a pilot microarray study. Arch Neurol 62: 210–215

    Article  PubMed  Google Scholar 

  48. Green NS and Pass KA (2005) Neonatal screening by DNA microarray: spots and chips. Nat Rev Genet 6: 147–151

    Article  CAS  PubMed  Google Scholar 

  49. Nagasaka Y et al. (2005) A unique gene expression signature discriminates familial Alzheimer's disease mutation carriers from their wild-type siblings. Proc Natl Acad Sci USA 102: 14854–14859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chee M et al. (1996) Accessing genetic information with high-density DNA arrays. Science 274: 610–614

    Article  CAS  PubMed  Google Scholar 

  51. Kallioniemi A et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818–821

    Article  CAS  PubMed  Google Scholar 

  52. Pollack JR et al. (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23: 41–46

    Article  CAS  PubMed  Google Scholar 

  53. Lucito R et al. (2000) Detecting gene copy number fluctuations in tumor cells by microarray analysis of genomic representations. Genome Res 10: 1726–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barrett MT et al. (2004) Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci USA 101: 17765–17770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sharp AJ et al. (2005) Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 77: 78–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sebat J et al. (2004) Large-scale copy number polymorphism in the human genome. Science 305: 525–528

    Article  CAS  PubMed  Google Scholar 

  57. Pinkel D and Albertson DG (2005) Array comparative genomic hybridization and its applications in cancer. Nat Genet 37 (Suppl): S11–S17

    Article  CAS  PubMed  Google Scholar 

  58. Yu W et al. (2003) Development of a comparative genomic hybridization microarray and demonstration of its utility with 25 well-characterized 1p36 deletions. Hum Mol Genet 12: 2145–2152

    Article  CAS  PubMed  Google Scholar 

  59. Locke DP et al. (2003) Large-scale variation among human and great ape genomes determined by array comparative genomic hybridization. Genome Res 13: 347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sellick GS et al. (2004) Genomewide linkage searches for Mendelian disease loci can be efficiently conducted using high-density SNP genotyping arrays. Nucleic Acids Res 32: e164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Matsuzaki H et al. (2004) Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res 14: 414–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hinds DA et al. (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307: 1072–1079

    Article  CAS  PubMed  Google Scholar 

  63. Altshuler D et al. (2005) A haplotype map of the human genome. Nature 437: 1299–1320

    Article  CAS  Google Scholar 

  64. International HapMap Project [http://www.hapmap.org]

  65. Klein RJ et al. (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308: 385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Arinami T et al. (2005) Genomewide high-density SNP linkage analysis of 236 Japanese families supports the existence of schizophrenia susceptibility loci on chromosomes 1p, 14q, and 20p. Am J Hum Genet 77: 937–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maraganore DM et al. (2005) High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet 77: 685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gunderson KL et al. (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37: 549–554

    Article  CAS  PubMed  Google Scholar 

  69. Syvanen AC (2005) Toward genome-wide SNP genotyping. Nat Genet 37 (Suppl): S5–S10

    Article  PubMed  CAS  Google Scholar 

  70. Cutler DJ et al. (2001) High-throughput variation detection and genotyping using microarrays. Genome Res 11: 1913–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maitra A et al. (2004) The Human MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection. Genome Res 14: 812–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tengs T et al. (2005) A transforming MET mutation discovered in non-small cell lung cancer using microarray-based resequencing. Cancer Lett [10.1016/j.canlet.2005.08.007]

  73. Mandal MN et al. (2005) Sequencing arrays for screening multiple genes associated with early-onset human retinal degenerations on a high-throughput platform. Invest Ophthalmol Vis Sci 46: 3355–3362

    Article  PubMed  Google Scholar 

  74. Takahashi Y et al. (2005) Development of DNA microarray-based high throughput gene analysis system for neurodegenerative diseases. Neurology 64 (Suppl 1): SA4

    Google Scholar 

  75. Margulies M et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gohil K et al. (2003) Gene expression profile of oxidant stress and neurodegeneration in transgenic mice deficient in alpha-tocopherol transfer protein. Free Radic Biol Med 35: 1343–1354

    Article  CAS  PubMed  Google Scholar 

  77. D'Agata V et al. (2002) Gene expression profiles in a transgenic animal model of fragile X syndrome. Neurobiol Dis 10: 211–218

    Article  CAS  PubMed  Google Scholar 

  78. Seznec H et al. (2005) Friedreich ataxia: the oxidative stress paradox. Hum Mol Genet 14: 463–474

    Article  CAS  PubMed  Google Scholar 

  79. Evert BO et al. (2003) Gene expression profiling in ataxin-3 expressing cell lines reveals distinct effects of normal and mutant ataxin-3. J Neuropathol Exp Neurol 62: 1006–1018

    Article  CAS  PubMed  Google Scholar 

  80. Lieuallen K et al. (2001) Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes. Hum Mol Genet 10: 1867–1871

    Article  CAS  PubMed  Google Scholar 

  81. Tan G et al. (2003) Decreased expression of genes involved in sulfur amino acid metabolism in frataxin-deficient cells. Hum Mol Genet 12: 1699–1711

    Article  CAS  PubMed  Google Scholar 

  82. Noguchi S et al. (2003) cDNA microarray analysis of individual Duchenne muscular dystrophy patients. Hum Mol Genet 12: 595–600

    Article  CAS  PubMed  Google Scholar 

  83. Dickey CA et al. (2003) Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice. J Neurosci 23: 5219–5226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Reddy PH et al. (2004) Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease. Hum Mol Genet 13: 1225–1240

    Article  CAS  PubMed  Google Scholar 

  85. Yoshihara T et al. (2002) Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 80: 158–167

    Article  CAS  PubMed  Google Scholar 

  86. Grunblatt E et al. (2001) Gene expression analysis in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model of Parkinson's disease using cDNA microarray: effect of R-apomorphine. J Neurochem 78: 1–12

    Article  CAS  PubMed  Google Scholar 

  87. Kalman J et al. (2005) Gene expression profile analysis of lymphocytes from Alzheimer's patients. Psychiatr Genet 15: 1–6

    Article  CAS  PubMed  Google Scholar 

  88. Ginsberg SD et al. (2000) Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. Ann Neurol 48: 77–87

    Article  CAS  PubMed  Google Scholar 

  89. Ho L et al. (2001) Altered expression of a-type but not b-type synapsin isoform in the brain of patients at high risk for Alzheimer's disease assessed by DNA microarray technique. Neurosci Lett 298: 191–194

    Article  CAS  PubMed  Google Scholar 

  90. Loring JF et al. (2001) A gene expression profile of Alzheimer's disease. DNA Cell Biol 20: 683–695

    Article  CAS  PubMed  Google Scholar 

  91. Colangelo V et al. (2002) Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 70: 462–473

    Article  CAS  PubMed  Google Scholar 

  92. Blalock EM et al. (2004) Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA 101: 2173–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jiang YM et al. (2005) Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. Ann Neurol 57: 236–251

    Article  CAS  PubMed  Google Scholar 

  94. Satoh J et al. (2005) Microarray analysis identifies an aberrant expression of apoptosis and DNA damage-regulatory genes in multiple sclerosis. Neurobiol Dis 18: 537–550

    Article  CAS  PubMed  Google Scholar 

  95. Grunblatt E et al. (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 111: 1543–1573

    Article  CAS  PubMed  Google Scholar 

  96. Hauser MA et al. (2005) Expression profiling of substantia nigra in Parkinson disease, progressive supranuclear palsy, and frontotemporal dementia with parkinsonism. Arch Neurol 62: 917–921

    Article  PubMed  Google Scholar 

  97. Warrington JA et al. (2002) New developments in high-throughput resequencing and variation detection using high density microarrays. Hum Mutat 19: 402–409

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H Geschwind.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coppola, G., Geschwind, D. Technology Insight: querying the genome with microarrays—progress and hope for neurological disease. Nat Rev Neurol 2, 147–158 (2006). https://doi.org/10.1038/ncpneuro0133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing