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A link between structural ordering and slow dynamics has recently attracted much attention 
from the context of the origin of glassy slow dynamics. Candidates for such structural order are 
icosahedral, exotic amorphous and crystal-like. Each type of order is linked to a different scenario 
of glass transition. Here we experimentally access local structural order in polydisperse hard 
spheres by particle-level confocal microscopy. We identify the key structures as icosahedral and 
FCC-like order, both statistically associated with slow particles. However, when approaching 
the glass transition, the icosahedral order does not grow in size, whereas crystal-like order 
grows. It is the latter that governs the dynamics and is linked to dynamic heterogeneity. This 
questions the direct role of the local icosahedral ordering in glassy slow dynamics and suggests 
that the growing length scale of structural order is essential for the slowing down of dynamics 
and the non-local cooperativity in particle motion. 
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On cooling, a liquid usually undergoes a first-order transi-
tion to an ordered ground state (crystal or quasi-crystal). 
However, it is generally possible to avoid the transition and 

to form a metastable supercooled liquid. On further cooling, the 
dynamics slows down dramatically by many orders of magnitude, 
leading to the impossibility to equilibrate the system in the experi-
mental time scale below the glass transition temperature Tg. The 
nature of the glass transition (thermodynamic or kinetic, struc-
tural or purely dynamical) is still a matter of debate after decades 
of intensive research (see Cavagana1 and Berthier and Biroli2 for 
comprehensive reviews).

Part of the answer is believed to come from the dynamics in itself: 
a supercooled liquid is dynamically heterogeneous (see Berthier 
and Biroli2 for a review) and the characteristic size of the dynami-
cal heterogeneity grows when approaching the glass transition3,4 
(although non-monotonic behaviour has been observed recently5). 
The dynamical arrest may then be the analogue of the slowing 
down observed near a critical point when the characteristic size of 
the fluctuations diverges, although slowing down at a particle level  
is absent in ordinary critical phenomena. The lengthscale defined  
by the dynamical heterogeneity is not static (one-time spatial  
correlation) but dynamic (two-time spatial correlation).

Modern spin-glass-type theories of the structural glass transi-
tion6–8 introduce a possible static length, called the ‘point-to-set’ 
length, which makes neither assumption nor description of the 
‘amorphous order’ underlying the glass transition. It was dem-
onstrated theoretically9 for lattice models that the growth of a  
dynamical length scale imposes a lower bound on the point-to-set 
length. However, this constraint is expected to become relevant 
only in a low-temperature regime inaccessible to present-day simu-
lations5. Indeed, static lengths have been measured uncorrelated 
to the dynamic one above this regime10. The relation between the 
dynamical and the static length scales is a cornerstone of the debate 
between geometrical frustration-based descriptions, facilitation-
based descriptions and the random first-order transition theory.

To unveil static quantities, it is tempting to link dynamical heter-
ogeneity to structural heterogeneity. Stable structures should move 
less than unstable ones. Widmer-Cooper and Harrowell11 demon-
strated that the initial configuration of a simulation, independently 
of the initial dynamics, has a role in the heterogeneity of the dynam-
ics. Berthier and Jack12 pointed out later that this influence does 
not exist at the particle level, but on larger scales: medium-range 
particle configuration can be statistically linked to medium-range 
dynamical heterogeneity. However, these arguments are based on 
the iso-configurational ensemble (starting several simulations 
with different dynamics but with the same initial configuration), a 
method that has no experimental equivalent.

Given that a glass shows no long-range periodic order, structures 
different from a crystal, icosahedral13–15 or amorphous order6, are 
most often pointed as responsible for the dynamical arrest. Since 
the pioneering work of Frank16, icosahedral order is the arche-
typal model of amorphous structures17. Locally, an icosahedron 
maximizes the density of packing, but its fivefold symmetry is 
incompatible with long-range periodicity. Geometrical frustra-
tion associated with icosahedral ordering is proposed to be crucial 
for vitrification13–15. It was also proposed that the percolation of 
icosahedral order is responsible for the glass transition18. Evidence 
of icosahedral ordering has indeed been found in very dense hard 
sphere packings10,19–22, in various simulation models13,18,23–25, 
and more recently in experimental dense metallic liquids26,27 and 
glasses28,29.

Geometrical frustration in icosahedral order (or more gener-
ally locally favoured structures of the liquid) has a central role in 
original versions of the spin-glass-type theory13,14 and the frustra-
tion-limited domain theory of the glass transition (see Tarjus et al.15 
for a review). The former theory considers the icosahedral ordering 

under frustration. On the other hand, the latter theory takes as a  
reference state an unfrustrated icosahedral order existing in a curved 
space, even if (and because) this reference state is impossible for the 
real system to reach. If the space were curved, the locally preferred 
order of the liquid (icosahedral) would form a continuous ordered 
phase on cooling. In the euclidean space, however, this transition is 
avoided, yet the avoided transition temperature still acts as a critical 
point giving rise to diverging lengthscales (icosahedral domain size 
and defect size) that would explain the dynamical arrest. This the-
ory suggests that the frustration-limited domains are the origin of  
the dynamical heterogeneity. Both theories are still very popular  
and icosahedral order is often cited as the reference amorphous 
structure particularly in metallic glasses26–29. Yet, to our knowl-
edge, numerical systems where a link between icosahedral order 
and dynamical heterogeneity has been observed25,26, always have 
a (quasi-)crystalline ground state including icosahedra. Thus, 
icosahedra could be regarded as a structural motif linked to the 
crystalline ground state in these systems. From this point of view, 
these results support neither the spin-glass nor frustration-limited 
domain approaches based on frustration in icosahedral order, but 
rather the crystal-based approach (see below).

An alternative way of explaining the phenomenology of the glass 
transition is based on the structure of the crystal. Crystallization, 
even if avoided, may have an influence on the supercooled fluid 
or the glass30–32 and is taken as a reference state. Simulations and 
experiments33 show that a local bond orientational order (BOO) 
compatible with the ground state (crystal) symmetry does extend 
to medium range in several model supercooled systems at acces-
sible temperatures. In this class of systems, these transient but rela-
tively stable structures seem to be correlated with the slow regions 
because they are low free-energy configurations. Furthermore, they 
lack extended positional order and thus could not be detected by 
macroscopic diffraction experiments. We emphasize that high crys-
tal-like bond orientation regions are not crystal nuclei with solid 
nature, but transient medium-range structural order formed in a 
liquid as thermal fluctuations.

In the present work, we focus on the colloidal (hard spheres) 
supercooled liquid34 for two reasons. First, hard sphere-like colloi-
dal particles can be tracked by confocal microscopy, giving access to 
the positions and dynamics of individual particles35,36, thus allow-
ing microscopic analysis of the dynamical and structural heteroge-
neity. Second, hard spheres have a well-defined crystalline ground 
state of face-centred-cubic (FCC) or hexagonal-close-packed (HCP) 
symmetry and locally favoured structures of icosahedral symmetry. 
This enables us to distinguish the different scenarios of glass tran-
sition, in particular, the frustration-limited domain scenario, the 
amorphous order scenario and the medium-range crystalline order 
scenario. We will show that both kinds of order are statistically 
associated with slower than average particles. However, icosahe-
dral order remains local, whereas the crystal-like order correlation 
length grows when approaching the glass transition. Moreover, the 
medium-range crystalline order is associated with the slow regions 
of the dynamic heterogeneities. We confirm that both structural and 
dynamical length scale grow in the same (critical-like) way. Our 
results suggest that, when not compatible with an avoided crystal-
lization, local ordering seems to have a minor role in the dynamical 
aspects of the glass transition.

Results
Dynamics. We were able to follow the volume fraction dependence 
of the dynamics over nearly three orders of magnitude (Fig. 1), 
confirming the basic phenomenology observed in experiments2,34–36  
as well as simulations33 of similar systems. In Fig. 1a, we fit the 
self-intermediate scattering function by a stretched exponential 
∝ −e t( / )t b

α  that defines the structural relaxation time τα. Here β is 
the stretching exponent.
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The non-Gaussianity of the dynamics is monitored by the kurto-
sis of displacements distribution (Fig. 1b)
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where ∆r(t) = |(t0 + t) − (t0)| is the displacement of a particle after  
a time interval t. At a given volume fraction, α2(t) peaks at the  
characteristic time scale of the dynamic heterogeneity tdh(φ).

The volume fraction dependence of τα is super Arrhen-
ius and we fit it in Fig. 1d by the Vogel–Fulcher–Tammann law 
t t f f fα α= ( /( ))0

0exp D − , where D is the fragility index, φ0 is  
the hypothetical ideal glass transition volume fraction, and tα

0  is the 
microscopic timescale. We notice that tdh corresponds to the end of 
the plateau, always slightly shorter than τα.

The spatial heterogeneity of the dynamics is characterized by 
a four-point susceptibility χ4(t) and a four-point structure factor 
S4(q,t) (ref. 37). To the reader unfamiliar with these terms (defined 
in Methods), we note that S4(q,t)×N/Ns is the structure factor of a 
system containing only the slow particles.

As shown in Fig. 1c, the small wave-vector behaviour of S4(q,t) 
is well described by the asymptotic Ornstein–Zernike function in 
Fourier space:
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where ξ4(t) is the four-point correlation length (see Methods for 
the details of the fit). We found that at each volume fraction the 

(1)(1)

(2)(2)

maximum of χ4(t) is reached at times longer than the relaxation 
time τα . In summary, we have t tdh ≤ ≤t cα 4. For simplicity, we  
omit time dependence in S4, ξ4 and χ4 when t t= 4c . The volume 
fraction dependence of the resulting correlation length is plotted  
in the inset of Fig. 1d. In the volume fraction range that we were able 
to study, it follows a power law

x x f f f n
4 4,0 0 0= (( )/ ) ,− −

where ν = 2/3 and φ0 is independently determined by the above 
Vogel–Fulcher–Tammann fit; thus the bare correlation length ξ4,0 
is the only fitting parameter33. Note that the lengths are in units of 
the mean diameter σ.

Bond orientational ordering. The local structures of our sus-
pensions are identified by a detailed analysis of Steinhardt’s bond  
orientational order (BOO)13, including original improvements 
(Methods). Figure 2 summarizes our structure identification results. 
We find the distinctive signature of medium-ranged crystalline order 
(MRCO) of FCC type, without excluding some HCP. We find no 
trace of BCC-like structure. As for the aperiodic structures, icosahe-
dral order stands out without any other obvious rivals (dodecahedra 
are present but can be considered as twisted icosahedra).

We establish that in our system, the tendency towards icosahe-
dral order is best monitored by the order parameter w6, whereas 
Q6 is the natural crystal-like BOO parameter (see Methods for the 
definitions of w6 and Q6). The population of local structures in the 

(3)(3)
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Figure 1 | Dynamics of the system. (a) Decay of the self-intermediate 
scattering function (ISF) computed at wave vector q = 2π/〈σ〉. Lines are 
stretched exponential fits from which we extract the structural relaxation 
time τα. (b) Non-Gaussian parameter, whose maximum defines the 
characteristic time of the dynamic heterogeneity tdh. (c) Collapse of the 
small-q regimes of the four-point structure factor on the Orstein–Zernike 
function (solid curve). (d) φ-dependence of τα (circles) and of tdh 
(squares). The solid curve is the Vogel–Fulcher–Tammann fit for τα 
(φ0 = 0.600, D = 0.328). Inset: dynamical (ξ4, squares) and structural  
(ξ6, circles) correlation lengths scaled by their respective bare correlation 
length, respectively ξ4,0 = 0.206σ and ξ6,0 = 0.129σ. The curve is the power 
law given in the text. All times are scaled by the Brownian time τB, and all 
symbols in a–c are defined in the key of panel c.
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Figure 2 | Population of local particle configurations specified by the 
BOO parameters. The value of BOO parameter for a perfect structure is 
indicated by its name’s position on each map for (a) the (Q4,Q6) plane, 
(b) the (w4,Q6) plane and (c,d) the (w6,Q6) plane. Panels a–c are the 
populations at deep supercooling (φ = 0.575 ± 0.06); d is the same as c but 
for a liquid near the freezing point (φ = 0.497 ± 0.03). The colour at a given 
couple of BOO parameters indicate how often (log scale) this couple is 
detected (per units of area in this plane). The arrows stress the ordering 
tendencies: the tendency towards FCC is always visible, a weak tendency 
towards HCP can also be distinguished in b, and the tendency towards 
icosahedral order (ICO) is visible in c. Conflicting tendencies towards FCC 
and ICO in c is a manifestation of competing orderings, or frustration, 
between them. Straight lines are drawn at important thresholds, Q6

*  , w6
*  , 

w6
dod and w4 = 0, that differentiate between FCC and HCP.
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(w6,Q6) plane is shown in Fig. 2c-d, which confirms that the two 
tendencies are present in the supercooled liquid of hard spheres. 
In particular, icosahedra are present even at a relatively low volume 
fraction (Fig. 2d). Both tendencies become more pronounced for 
deeper supercooling (Fig. 2c). Furthermore, Fig. 2c shows clearly 
that icosahedral order and crystalline order are incompatible and 
frustrate one another.

Bond order mobility. In the introduction, we mentioned the 
dynamic propensity invented by Widmer-Cooper and Harrowell11 
as a trick only accessible via simulations. In our system, as we know 
the relevant structural order parameters (w6 and Q6), we can com-
pute the square displacement of all the particles with the same ini-
tial local structure (iso-bond order ensemble) and call it bond order 
mobility. We define the w6-mobility as
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where the brackets denote ensemble averaging. ∆r2(Q6,t) and 
∆r2(w6,Q6,t) can be defined in the same way. The iso-configurational  
propensity is very powerful, as it does not require any a priori infor-
mation on structures and thus can probe any static order if it exists. 
This feature is absent in the bond order mobility, which instead has 
the merit of accessibility even in a system that cannot be restarted  
ab libitum from exactly the same overall configuration. In general, 
the two quantities are not equivalent.

Figure 3 shows the bond order mobility (calculated at the char-
acteristic time of the dynamical heterogeneity, tdh). Both structural 
order parameters have a clear correlation with the dynamics: the 
more structured is the environment, the more likely the particle will 
be slow. For all volume fractions, the mobility displays the same lin-
ear dependence on w6 (Fig. 3b). Once scaled by the mean square 
displacement, all points collapse on the same line. This is not the 
case for the Q6 dependence (Fig. 3c), which is more and more pro-
nounced with increasing the degree of supercooling. In our most 
deeply supercooled sample, the crystal-like environments can be 
in average 10 times slower than the bulk, whereas even the almost 
perfect icosahedra are in average only 40% slower than the bulk. 
A complete screening of all the possible BOO mobilities excludes 
a link of slow dynamics to any other local symmetries (including 
exotic amorphous order), at least in our system.

To explain our mobility data, we can refer to the cage picture, 
where a particle is considered as trapped in the cage formed by its 
neighbours. Once the particle has escaped from its cage, it is free  
to diffuse. In general, this picture is not correct due to dynami-
cal heterogeneity, or nonlocal cooperativity of motion. In the case  
of the icosahedral environment, however, it seems to hold: the 
normalization by the bulk mean-square displacement takes into 
account the diffusion once out of the cage, and the remaining uni-
versal dependence on w6 holds the information about the ‘quality’ of 
the cage. Efficient packing makes the 13 particles icosahedra more 
stable than a disordered structure. Thus, the central particle has  
a low probability to escape from its cage and start diffusing. After 
cage escaping, however, it diffuses in average like any other par-
ticle. This suggests that the influence of icosahedral order on the 
dynamics is only local because of its isolated character. By contrast, 
the non-trivial φ dependence of the Q6 mobility calls for non-local 
explanations.

Real space patterns and length scale. To observe the ordered 
regions in real space, we define the thresholds w6* and Q6

* so that the 
bond order mobility at the threshold is half between the bulk and 

(4)(4)

the (extrapolated) perfect structure. In our most deeply supercooled 
sample, this criterion yields Q6

* = 0.25 for crystal-like structures  
(Fig. 3d) and w6

* = 0.023−  for icosahedral structures (Fig. 3e). These 
thresholds are arbitrary but coherent with each other. We display 
in Fig. 4b typical configurations of the ordered neighbourhoods in  
our deepest supercooled sample. With our thresholds, we see only 
small patches of icosahedral order that are not reaching medium 
range, whereas clusters of crystal-like order are much larger than 
icosahedral clusters and their sizes reach medium range.

Here it may be worth stressing that MRCO does not correspond 
to crystal nucleus (compare Fig. 4a,b). However sub-critical nuclei 
are not unrelated to crystal-like BOO. Nuclei are systematically 
embedded into much larger MRCO. One can explain this phenom-
enon as perfect wetting of the nuclei by coherently bond-ordered 
regions38. We note that the size of the crystal nuclei is smaller than 
the critical nucleus size and thus they appear only transiently. Fur-
thermore, examples of crystal-like structures without embedded 
crystal nucleus, in addition to the continuity of Q6 values (Fig. 2),  
suggest that the crystal nuclei are the extreme part of the bond 
order fluctuations. Indeed it has been shown in hard spheres38–41, 
Gaussian-core model42 and probably Wahnström binary Lennard– 
Jones24 that parts of MRCO (fluid regions with a structure remi-
niscent of the crystal) act as precursors to crystallization if the local 
density there is high enough. However in these systems, the pres-
ence of precursors to crystallization does not imply the formation 
of a critical nucleus and growth. Furthermore, MRCO is always 
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Figure 3 | Bond order mobility. (a) Normalized mobility in the (w6,Q6) 
plane for our most deeply supercooled sample (φ = 0.575 ± 0.03). The 
colour scale is saturated at 1.5 times the bulk mean square displacement. 
(b,c) Normalized mobility for icosahedral and crystalline order parameters 
respectively at volume fraction 0.535 (blue squares), 0.555 (brown 
triangles) and 0.575 (red diamonds), all  ± 0.03. Bulk mean square 
displacement is scaled to be at 1 (horizontal line). Perfect structures are 
on the edge of each plot, as indicated by the arrows. The lines are a guide 
for the eye, stressing the collapse of the w6 mobility at all volume fractions 
in b and the absence of such collapse in c. The scattering at low volume 
fractions is due to poor averaging of rare structures. Straight lines in a–c 
correspond to the important thresholds: Q6

* , w6
*  and w6

dod. Examples of 
crystal-like cluster and distorted icosahedron at the respective threshold 
values are shown in d and e, respectively.
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present (transiently) in the supercooled liquid: MRCO are usual 
fluctuations of the system, as common as the fast and slow regions 
of the dynamic heterogeneity33. We also note that the average den-
sity within MRCO is the same as within disordered liquid regions 
and thus different from within crystal nuclei38.

Now we consider a link between static spatial structures and 
dynamics. Reflecting the short-range nature of icosahedral order, 
we were not able to extract the associated lengthscale that would 
grow when approaching the glass transition. By contrast, the spa-
tial extent of crystal-like BOO is well described by G6(r), the spa-
tial correlation function of Q6m (see, for example, Tanaka et al.33). 
Both dynamical and structural lengthscales (defined in Methods) 
are increasing while approaching the glass transition in a coherent 
manner (inset of Fig. 1d). We can see that near φ0, the growth of 
both dynamic and static correlation length can be well expressed by 
the same power law equation (3), although the range is rather lim-
ited. In agreement with Tanaka et al.33, it suggests that the dynami-
cal heterogeneity in hard spheres is a manifestation of critical-like 
fluctuations of the crystal-like BOO parameter, and neither those of 
icosahedral nor amorphous order. In relation to this, we stress that 
G6(r) is not sensitive to aperiodic structures such as icosahedral and 
amorphous order (Methods).

Of course, one can set a more permissive threshold on w6 and 
observe more icosahedra. A percolating network of icosahedral 
neighbourhood can even be found at a high volume fraction if the 
threshold encompasses enough particles (Fig. 5c). However, the 
imperfect icosahedra particles that must be included to form this 

network have a mobility comparable to the bulk (Fig. 3b). Fur-
thermore, we checked that this percolation is of the 3D random 
percolation class (cluster size distribution follows a power law of  
exponent ≈2.1, Fig. 3a), meaning that a comparable network could 
be obtained by picking randomly the same number of particles  
(Fig. 5d). We conclude that the concept of an icosahedral network is 
not physically meaningful, at least in our system.

As a final but an intuitive check, we compare the spatial reparti-
tion of stable crystal-like order (Fig. 4c) and slow particles (Fig. 4d). 
As shown in Berthier and Jack12, the correlation between structure 
and dynamics is not a one-to-one correspondence at the particle 
level but a statistical relationship on larger length scales. We were 
able to show visually this correlation by averaging out short time 
(tdh/2) fluctuations of Q6; by calculating the square displacement 
of each particle over 2τα≈4.5tdh, which allow to accumulate many 
rearrangement events; and by coarse-graining this value over the 
particle’s neighbours12 (see equation (14) in Methods). Figure 4d 
displays the 10% slowest particles according to this criterion and 
their neighbours. The correlation of shape and size is clearly seen 
between Fig. 4c,d, although it is not perfect. The slight disagreement 
comes from the following: some clusters of FCC-like order disap-
pear soon after the initiation of the displacement measurement and 
some particle groups, which come back to their original positions 
after the period of 2τα , can be accounted as slow particles. We could 
find no such correlation between icosahedral particles (Fig. 4b) and 
slow regions.

Note that we recover the correlation between crystal-like order 
and slowness by two independent methods: directly in instantaneous 
BOO space via mobility on moderate times; and indirectly via posi-
tions and shapes of (short time averaged) ordered regions coherent 
with those of slowest regions (on long times). In the former method,  
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Figure 4 | Computer reconstruction from confocal microscopy 
coordinates in our most deeply supercooled sample. Depth is about 12σ.  
Only particles of interest and their neighbours are displayed. Each particle 
is plotted with its real radius. (a) Particles with more than seven crystalline 
bonds. (b) A typical configuration of bond-ordered particles. Icosahedral 
particles are shown in the same colour if they belong to the same cluster. 
If a particle is neighbouring both crystal-like and icosahedral structures, 
it is displayed as icosahedral. (c) Crystal-like particles alone (the order 
parameter was averaged over tdh/2). (d) Slow particles with respect to  
the coarse-grained displacement. Because of particles going in and out  
of the field-of-view, assignment of particles located very near the edges  
of c and d were not accurate and have been removed.
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Figure 5 | Imperfect icosahedral clusters. (a) Cluster size distribution 
for nearly percolating threshold (w6 <  − 0.012). The exponent of random 
percolation ( − 2.1) is given by the straight line. (b) Radius of gyration 
(indicating a fractal dimension df ≈ 2 given by the straight line) for the 
case of a. (c) Size of the largest non-percolating cluster as a function of 
the threshold on w6. Percolation takes place near w6≈ − 0.011. Vertical 
lines indicate the position of w6

*  and w6
dod, respectively. (d) Translation 

of c in terms of the fraction of activated particles (dots) together with 
the probability of the onset of percolation when particles are randomly 
activated (grey shading). We can see that activating particles as a function 
of icosahedral order and those activated randomly have almost the same 
percolation threshold (≈7.5% of the particles activated).
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quality of statistics comes from ensemble averaging over many  
realizations of each structure. In the latter method, it comes  
from both coarse graining and the length of trajectories that allow 
accumulating many rearrangement events.

Discussion
We have demonstrated that supercooled hard-sphere liquids display 
local icosahedral ordering as well as structural ordering linked to 
the avoided crystalline (FCC) ground state. Both types of pack-
ing have low local free energy and thus are locally favoured. Yet 
the icosahedral order remains local even at deep supercooling and 
(consistently with the arguments of Berthier and Jack12) is not able 
to influence significantly the global dynamics. By contrast, the slow-
ing down associated with the crystal-like BOO is non-local and 
long-lived. The characteristic length scale of the crystal-like order 
grows when approaching the glass transition in the same way as that 
of the dynamical heterogeneity. This suggests that the structural ori-
gin of the dynamical arrest is linked to the avoided crystallization 
and neither to the condensation of the local (icosahedral) order of 
the liquid nor to the exotic amorphous order, at least in our sys-
tem. We note that the development of structural order and its link 
to dynamic heterogeneity are at odds with purely kinetic scenarios 
of glass transition.

How general is our crystal-like order scenario? Not all glass  
formers crystallize, indeed the crystal structure of many glass  
formers is unknown. However, in a system where the crystalliza-
tion is possible but unlikely (a definition that include many practi-
cal glass formers), we expect structures locally reminiscent of the 
symmetry of the crystal to be present as common fluctuations of 
the supercooled liquid. Their relative stability and ability to reach 
medium-range sizes makes them a good candidate to explain the 
slow regions of the dynamic heterogeneity. In that class of systems, 
static and dynamical lengths would grow together. Yet the general-
ity and limitation of this scenario need to be checked carefully in  
the future.

We note that Charbonneau et al.10 do not find growing sixfold 
bond order length scale in a binary hard sphere mixture. Hopkins 
et al.43,44 showed that for this size ratio, if the two components  
de-mix they crystallize independently in FCC or HCP; however the 
symmetry-breaking phase of the mixed system is not known and 
could possibly be not sixfold symmetric. This de-mixing required 
for crystallization may destroy a link between configurations of low 
local free energy in the liquid state and the crystal structure. Indeed, 
the study of BOO in binary systems with the concept of BOO is not 
promising, as reported in Tanaka et al.33 and Kawasaki et al.45 for 
2D binary soft disk simulations.

For some systems, the first-order transition avoided on super-
cooling leads to a symmetry compatible with icosahedral order. 
The symmetry-breaking phase can be a quasi-crystal23 or a Frank–
Kasper crystal, as recently demonstrated for the Wahnström mix-
ture24. In that case, the icosahedral order can be regarded as part 
of the defective crystalline BOO that slows down the system, so the 
icosahedral order can have a role in the slowing down. However, 
we showed here that when the icosahedral order is not compatible 
with the crystal symmetry, its role in the slowing down is actually 
minor.

We do not say that the local (icosahedral) order of the liquid  
is unimportant in the glass transition. Actually it has a role in  
preventing the first-order transition (crystallization) from happen-
ing, thus allowing supercooling and the glass transition46. Further-
more, this frustration against crystallization may be linked to the 
fragility of the glass former30,33. Competing crystal-like and non-
crystal-like orderings may be important in many glass-forming 
systems covering colloidal, molecular, polymeric, oxide, chalcoge-
nide, and metallic glasses. Indeed, our competing ordering scenario 
seems very consistent with a recent finding in metallic liquids47  

and may explain the high glass-forming ability of bulk metallic  
glass formers48. An intimate link between the liquid and crys-
tal structure may also provide a mechanism of fast phase-change  
materials49.

Methods
Experimental. We used PMMA (poly(methyl methacrylate)) colloids sterically 
stabilized with methacryloxypropyl terminated PDMS(poly(dimethyl siloxane)) 
and fluorescently labelled with rhodamine isothiocyanate chemically bonded to the 
PMMA. The size distribution, as characterized by scanning electron microscopy 
imaging (Supplementary Fig. S1), showed a long tail towards small sizes, leading 
to the polydispersity larger than 6%. This amount of polydispersity allows us to 
avoid or at least delay crystallization50 (see below the for crystallization monitoring 
method) but is too low for fractionation to happen51. The colloids were suspended 
in a solvent mixture of cis-decalin and cyclohexyl-bromide for both optical index 
and density matching. To screen any (weak) electrostatic interactions, we dissolved 
tetrabutylammonium bromide salt, to a concentration of 300 nmol l − 1(ref. 52).  
The estimated Debye screening length is 13, well below the length scale of the  
colloids. To avoid errors due to the swelling of the particles, their size was 
measured in the same solvent by the following technique: short-ranged depletion 
attraction was induced by adding non-adsorbing polystyrene to a dilute suspension 
to drive particles into contact; the position of the first peak of the g(r) gave the 
diameter σ = 3.356 ± 0.03 µm.

After careful shear melting, the samples are filled into square 500 µm capillaries 
(Vitrocom). The most deeply supercooled sample showed a slight indication of 
sedimentation even after careful density matching. To avoid this effect, we used 
a thinner 100 µm × 1 mm cell. The data were collected on a Leica SP5 confocal 
microscope, using 532 nm laser excitation. The temperature was controlled on both 
stage and objective lens, allowing a more precise density matching. Our polydis-
perse colloids were detected using a novel multi-scale algorithm (Supplementary 
Methods), which allows us to retrieve both position and size of each particle with 
about 1% precision, and this for any arbitrary size distribution. We stress that 
standard particle tracking methods35,36 are not able to track all the particles in our 
polydisperse samples (Supplementary Fig. S2). The large size of our colloids allows 
a comparable precision in position for both in-plane and out-of-plane coordinates 
(Supplementary Fig. S1). The particles are tracked in time to extract dynamical 
informations. Typically ≈5,000 trajectories can be followed over a few structural 
relaxation times.

Dynamics. To characterize the dynamic heterogeneity, we define a microscopic 
overlap function wi(t) = Θ[b − |ri(t) − ri(0)|], where Θ(x) is Heaviside step function, 
ri(t) is the position of particle i at a time t, and b = 0.3〈σ〉. The number of overlap-
ping particles is Ns(t) and in the thermodynamic limit its fluctuations define the 
four-point susceptibility:

c4
2 2= ( )/ .〈 〉 − 〈 〉 〈 〉N N Ns s

In a simulation with a fixed number of particles N and a limited size, some  
fluctuations are forbidden, thus equation (5) do not give the right value of χ4  
(see Flenner et al.37). However, in our experiments we are observing a small  
portion of the whole colloidal suspension, thus we can use time average to sample 
all the fluctuations of this large system, and equation (5) becomes exact and  
ensemble-independent.

The four-point structure factor37 is

S q t N W t W t W t4
1 2( , ) = ( ( , ) ( , ) | ( , ) |),− − −q q q

where W(q,t) is the Fourier transform of wi(t):

W t w t i
i

i i( , ) = ( ) ( (0)).q q r∑ − ⋅exp

Our experimental data do not have periodic boundary conditions, so we must 
use a window function to ensure the correct correlation, especially at small q. Here 
we use the Hamming window, but we checked that our results are not affected by 
other reasonable choices of the window function. The results are shown in Fig. 1c.

As stressed in Flenner et al.37, the value S4 (q = 0) is crucial for the quality of 
the fit in equation (2). Here we use the value of χ4 given by equation (5) and we fit 
S4(q) for q < 1.5/ξ4.

Structure identification. Steinhardt et al.13 defined the BOO of the -fold  
symmetry as a 2 1 +  vector:

q i
N

Ym
i

Ni
m ij ij ( ) = 1 ( ( ), ( )),

0
∑ q fr r

(5)(5)

(6)(6)

(7)(7)

(8)(8)
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where the Y m  are spherical harmonics and Ni is the number of bonds of particle i. 
In the analysis, one uses the rotational invariants defined as:

q
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+ −
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where the term in brackets in equation (10) is the Wigner 3-j symbol. Note that 
the popular13,53 ŵ can show a large norm if its denominator (or q) has small 
values (particle with low -fold symmetry). Therefore, we have used here w  that 
pulls clearly apart highly symmetric particles from the fluid distribution. Following 
Lechner and Dellago53, we coarse grain the tensorial BOO over the neighbours:

Q i
N

q i q jm
i

m
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1
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+




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


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∑

and define coarse-grained invariants Q and W  in the same way as equations (9) 
and (10). Structures with and without spatial extendability are then much easier to 
tell apart53. For non-extendable local structures like icosahedra, their Q  and W 
are buried into the liquid distribution. With this in mind, we looked for extendable 
structures in the { , }Q W   space, and for non-extendable (aperiodic) structures in 
the { , }q w   space, with  = 4,6,8,10.

In both equations (8) and (12), the sum runs over the ‘neighbours’ (labelled 
with j) of particle i. The definition of the neighbours is crucial for the consistency 
of the analysis. The most popular criterion in literature is that particles closer than 
Rmax are neighbours, with Rmax the first minimum of g(r). To account for the poly-
dispersity, we used a threshold in the scaled distance ˆ ˆr r Rij ij i j= /( )<s s+ max ,  
with R̂max corresponding to the first minimum of g r( )ˆ . We made a first round of 
analysis using this definition, constructing maps similar to Fig. 2 but noisier. These 
maps allowed us to discard the possibility of BCC (high Q6, low Q4, high Q10) and 
generally any structure except FCC (high Q6, high Q4 and w4 < 0), HCP (high Q6 
and w4 < 0) or icosahedron (very negative w6, high q6 and q10). Dodecahedron can 
be found for w w6 6> 0.00782dod ≈ − , that is, between the liquid and the icosahe-
dral order. We are thus left with structures where the particles naturally have  
12 neighbours.

We then took a new BOO analysis, this time taking the first 12 closest particles 
(in r̂) as neighbours. This criterion reduces the noise in the distribution of the 
invariants and makes detected structures more easily comparable to crystallo-
graphic archetypes. It also avoids artefacts near Rmax in the correlation functions 
and removes the negative correlation between the number of neighbours and the 
value of the q. The figures presented here were constructed from this second 
round of analysis.

Crystal nuclei. To avoid any confusion between our imperfect crystal-like order 
and well-formed but small transient crystals, we detect crystal nuclei via the most 
standard method in the literature50,54. For each neighbouring particle, we compute 
the normalized scalar product of the (non-coarse-grained) q6m:

s i j
q i q j
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The bond between particles i and j is considered crystalline if s(i,j) > 0.7 (ref. 50).  
A particle is crystalline if more than half of its bonds (≥ 7) are crystalline.

Polydispersity is an important controlling factor, which determines the ease 
of crystallization of colloidal suspensions (see, for example, Zaccarelli et al.50). 
Polydispersity of our sample was high enough to prevent crystallization in bulk 
over our experimental time scale. However, heterogeneous nucleation from walls 
sometimes interfered our experiments, thus we had to discard such samples. We 
find no large crystal nucleus in the samples analysed in the text. Even at deep 
supercooling, a crystal nucleus never gathers more than eight particles. This is 
smaller than the critical nucleus size (2–3 particle diameters according to Auer and 
Frenkel55 and classical nucleation theory). In agreement, crystal-like solid regions 
appear only transiently without growth, that is, we never observed crystal nuclea-
tion in bulk for our samples. Truly crystalline particles account for less than 1% 

(9)(9)

(10)(10)

(11)(11)

(12)(12)

(13)(13)

of the system. Figure 4 allows to compare the spatial extent of crystal nuclei with 
that of the crystal-like clusters or of the slow regions. It demonstrates that trivial 
crystallization can be responsible for neither the spatial extent of the dynamical 
heterogeneities nor glassy slow dynamics.

Slow particles patterns. The above definition of neighbours is used consistently  
in the coarse graining of square displacements:
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where ∆r t ti i i
2 2( ) = ( ) (0)r r−  and the neighbours are defined at initial time.

Icosahedral percolation. We studied clusters formed by icosahedral particles  
as a bidirectional graph. The nodes of the graph are all the particles, and at the  
beginning we have no edge. When a particle is ‘activated’, the bonds between this 
particle and its 12 neighbours are added to the graph. It is often meaningful to 
activate the particles as a function of an order parameter, for example, sorted by 
increasing w6; the most icosahedral particle connects first and we activate particles 
that are less and less icosahedral until percolation and beyond. For our most  
supercooled sample, the percolation threshold is identified near w6 0.011≈ −   
(Fig. 5c), which corresponds to 7.5% of activated particles. We stress that this level 
of icosahedral order corresponds to an average mobility very close ( 90%) to  
the bulk (Fig. 3b).

In this way, the cluster size distribution and fractal dimension can be studied 
systematically at each value of the threshold on the order parameter. In Fig. 5a,b, 
we report characteristics of icosahedral clusters when the threshold is set just below 
percolation (all particles with w6 <  − 0.012 are activated). The cluster size distribu-
tion shows an exponent of 2.1, characteristic of the random percolation universal-
ity class. The fractal dimension is close to 2.

One can also activate particles in a random fashion and measure the fraction 
of activated particles needed for percolation to occur. We performed 100 try of this 
Metropolis algorithm on 160 configurations, to estimate the percolation probability 
function of the fraction of activated particles. Results are reported in Fig. 5d and 
indicate that the peculiar case of icosahedral order clusters has nothing special.

Bond order spatial correlation. We defined the coarse-grained bond order  
correlation function

G r

Q i Q j r r

r r
i j m

m m ij

i j
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which is not sensible to aperiodic structures. After baseline subtraction, the enve-
lope of G6(r) is fitted by the Ornstein–Zernike form to extract the crystal-like BOO 
correlation length ξ6. We checked that g6(r), defined from the non-coarse-grained 
bond order in the same way as equation (15), yield similar results. Insensibility 
against aperiodic structures comes from the scalar product in equation (15)18,  
not from coarse graining. 
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