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most tetrameric channels have cytosolic domains to regulate their functions, including 
channel inactivation. Here we show that the cytosolic C-terminal region of navsulP,  
a prokaryotic voltage-gated sodium channel cloned from Sulfitobacter pontiacus, accelerates 
channel inactivation. The crystal structure of the C-terminal region of navsulP grafted into the 
C-terminus of a naK channel revealed that the navsulP C-terminal region forms a four-helix 
bundle. Point mutations of the residues involved in the intersubunit interactions of the four-
helix bundle destabilized the tetramer of the channel and reduced the inactivation rate. The 
four-helix bundle was directly connected to the inner helix of the pore domain, and a mutation 
increasing the rigidity of the inner helix also reduced the inactivation rate. These findings suggest 
that the navsulP four-helix bundle has important roles not only in stabilizing the tetramer, but 
also in accelerating the inactivation rate, through promotion of the conformational change of 
the inner helix. 
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Voltage-gated sodium channels have essential roles in many 
important physiological processes, such as electric signal-
ling, muscle contraction, and pain sensation1. Their subtypes 

also show various channel properties, such as voltage dependency 
and the kinetics of activation and inactivation, characterizing their 
unique function. Therefore, mutations that impair channel activity 
can cause serious channelopathies2,3.

Prokaryotic voltage-gated sodium channels (NavBacs) are sim-
ple tetrameric sodium channels comprising monomers shorter  
than 300 amino acids4–7. Each subunit contains 6 transmembrane 
α-helices (S1–S6). Helices S5 and S6 form the pore domain in  
the centre of the tetrameric channel, and helices S1–S4 form voltage 
sensors that surround the pore domain and detect the membrane 
potential. NavBacs are widespread in various bacteria and small 
changes in their primary sequences alter their channel proper-
ties depending on the host bacteria environment4–7. Their various 
channel properties and structural simplicity make NavBacs use-
ful for analysing the basic molecular mechanisms of voltage-gated 
sodium channels.

Recently, the crystal structure of NavAb, cloned from Arcobacter 
butzleri, was determined by X-ray crystallography8. The crystal 
structure provided the first insight into the characteristic features 
of Nav channels, such as the additional helix (P2-helix) in the extra-
cellular vestibule of the pore domain and fenestrations on the sides 
of the pore module. The structure of the cytosolic carboxy-termi-
nal region of NavAb, however, was unclear8. Almost all known ion 
channels contain cytoplasmic domains that have essential roles in 
forming tetramers9, channel gating10,11, and regulating channel 
function12,13.

On the basis of electrophysiological analyses, as well as determi-
nation of the crystal structure of the C-terminal region of NavSulP 
grafted into the C-terminus of the NaK channel, we provide evi-
dence that the cytosolic C-terminal region of NavSulP, which is 
cloned from Sulfitobacter pontiacus, accelerates the channel inacti-
vation rate. The C-terminal region of NavSulP stabilized the tetra-
meric channel by forming a four-helix bundle (4HB). Moreover, the 
NavSulP 4HB formation had a unique role to accelerate the inacti-
vation rate through a conformational change of the inner helix of 
the pore domain.

Results
Characterization of NavSulP and C-terminal deletion mutants. 
NavSulP was cloned from S. pontiacus. The primary sequence of 
NavSulP has high identity (35.7%) and similarity (45.7%) with 
that of NaChBac, which was the first cloned NavBac from Bacillus 
halodurans4 (Fig. 1a; Supplementary Fig. S1a). NavSulP had a 
typical inward current (Fig. 1b). The half-maximum potentials for 
activation and inactivation of NavSulP were  − 31.2 ± 1.9 mV (n = 9) 
and  − 62.1 ± 1.0 mV (n = 6), respectively (Supplementary Fig. S1b). 
The time constants of activation (τact) and inactivation (τinact) of 
NavSulP at 0 mV membrane potential were 2.76 ± 0.45 ms and 
40.6 ± 7.0 ms (n = 8), respectively (the τinact values of all the mutants 
at 0 mV membrane potential are summarized in Table 1).

The C-terminal deletion of NavSulP (NavSulP∆C239) dramati-
cally reduced (~40-fold) the inactivation rate at 0 mV membrane 
potential (τinact = 1,701 ± 421 ms: n = 4), whereas the activation rate 
(τact = 7.96 ± 0.3 ms: n = 4) was a little slower than that of wild-type 
channels (Fig. 1c). Two other deletion mutants (∆C250 and ∆C257) 
also had slower inactivation rates (Supplementary Fig. S2). The inac-
tivation rates of the three deletion mutants were consistently slower 
than those of wild-type channels at various membrane potentials (Fig. 
2a; Table 1). The voltage producing the maximum current in the dele-
tion mutants was ~10–~20 mV lower than that in wild-type NavSulP 
(Fig. 2b–e). The half-maximum potentials (V1/2) for inactivation of the 
three mutants were also lower (~15–~25 mV) than that of wild-type 
NavSulP (Fig. 2f; the values of V1/2 for inactivation of all the mutants 
are summarized in Supplementary Table S1). The C-terminal dele-
tion of NavSulP caused the negative shift of the voltage-dependence of 
channel gating as well as the reduction of the inactivation rate.

In contrast to NavSulP, the inactivation rate is not altered in a 
NaChBac C-terminal deletion mutant14. Phylogenetic analysis 
of previously cloned NavBacs showed that they can be divided 
into three clusters (Fig. 1a). We measured the C-terminal dele-
tion mutants of two other NavBacs (NavBacL and NavSheP)7, 
belonging to a different cluster than NavSulP. NavBacL∆C246 and 
NavSheP∆C245 showed slightly slower inactivation rates than the 
wild-type channels (Supplementary Fig. S3). The voltage inducing 
the maximum current and V1/2 for channel inactivation, was similar 
to that of wild-type channels (Supplementary Table S1).
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Figure 1 | Functional expression of wild-type and C239 mutant channels of NavSulP. (a) Phylogenetic tree of the navBacs, whose channel activities 
are confirmed. The three red circles indicate the cluster related to the primary sequence similarity. The branch lengths are proportional to the sequence 
divergence, with the scale bar corresponding to 0.1 substitutions per amino-acid site. (b) and (c) schematic secondary structure and representative 
current traces of wild-type navsulP and C-terminal deletion navsulP (navsulP ∆C239) resulting from the voltage protocol shown below, respectively. 
The current traces and voltage protocols drawn in red indicate those obtained at 0-mV membrane potential.
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The crystal structure of NaK–NavSulPC239 chimera channel. 
To understand the structural and functional role of the C-terminal 
region of NavSulP in the inactivation, the crystal structure of the  
C-terminal region of NavSulP was determined in a NaK–NavSulP 
chimera channel at 3.2 Å resolution, because the full-length NavSulP 
crystal was not available. The NaK channel is a tetrameric cation 
channel whose structure was determined at high resolution15,16. 
The C-terminal region from Thr239 of NavSulP (NavSulPC239) 
was grafted to the C-terminal Glu114 of a full-length NaK channel 
(Supplementary Fig. S4). The chimera channel was well purified and 
crystallized. The structure of the chimera channel was determined 
by molecular replacement using the structure of a full-length NaK 
channel (pdb code: 2AHY (ref. 15)) as the initial model. Data col-
lectiyon and refinement statistics are summarized in Table 2.

The structure of the NaK–NavSulPC239 chimera channel 
revealed that the transmembrane pore domain of the chimera 
channel formed a closed channel, like that of non-chimeric full-
length NaK channels, and the C-terminal region of NavSulP was 
a well-ordered, 4HB structure extending away from the membrane 
(Fig. 3a). The asymmetric unit in the crystal lattice contained two 
monomers. The tetrameric channel had a two-fold symmetry rather 
than a four-fold symmetry. On the basis of the sequence similar-
ity among previously cloned NavBacs (Supplementary Fig. S1a), the  
C-terminal 4HB is a common structure in NavBacs.

The amino-terminal region and transmembrane domain, 
derived from the NaK channel up to Leu 98, was almost the same 
as that of the full-length NaK channel (averaged root-mean-square 
deviation = 0.65 Å). The cytosolic part of the inner helix, comprising 
residues from Asn101 to Gln103, of the chimera channel formed 
an extended loop (Supplementary Fig. S5a,b), although the inner 

Table 1 | Summary of the inactivation time constants.

τinact (ms) at 0 mV

WT 40.6 ± 7.0 (n=8)

∆C239 1701 ± 421 (n=4)
∆C250 1668 ± 233 (n=4)
∆C257 942 ± 181 (n=6)

Tandem WT 73.6 ± 8.95 (n=4)
Tandem∆C239 1350 ± 450 (n=5)

V246R 796 ± 81.3 (n=4)
L250R 845 ± 92.2 (n=4)
I253R 852 ± 266 (n=4)
L257R 917 ± 158 (n=5)

R243E 1534 ± 68.4 (n=4)
R243A 590 ± 166 (n=4)
T239V 312 ± 30.3 (n=5)
Y242F 51.5 ± 11.2 (n=5)
Y242A 601 ± 56.1 (n=6)

K249E 1610 ± 427 (n=5)
E251K 75.3 ± 12 (n=4)
E254K 57.4 ± 15.5 (n=4)
E251/E254K 69.1 ± 11.2 (n=4)

G221A 1850 ± 368 (n=6)
G221A∆C239 5089 ± 1144 (n=5)

The inactivation time constant (τinact) was defined as the time from the peak current to 1/e of 
the peak current. All results are presented as mean ± standard error.
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Figure 2 | Inactivation time constants and voltage-dependence of NavSulP and C-terminal deletion mutants. (a) The inactivation time constants (τinact) 
of navsulP wild type (closed circle, n = 8), ∆C239 (open triangle, n = 4), ∆C250 (open square, n = 4), ∆C257 (open circle, n = 6) and tandem∆C239 (closed 
triangle, n = 5) measured from the current traces elicited by step pulses from holding potential at  − 140 mV. The value of τinact was defined as the time 
from the peak current to 1/e of the peak current. (b–e) mean peak current-voltage (I/V) relation of navsulP wild type (n = 8), ∆C239 (n = 4), ∆C250  
(n = 4) and ∆C257 (n = 6), normalized by the maximum current, respectively. (f) steady-state inactivation curves for navsulP wild type (n = 6), ∆C239 (n = 6),  
∆C250 (n = 4), ∆C257 (n = 6) and tandem∆C239 (n = 5). After a 2-second prepulse (from  − 120 to  − 20 mV, increments of  + 10 mV), the wild-type  
channel was inactivated to a steady-state level and reactivated by a second depolarization pulse ( + 20 mV). For the C-terminal deletion mutants,  
a 15-second prepulse (from  − 130 to  − 20 mV, increments of  + 10 mV) was used. All values are presented as mean ± standard error.
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helix of the non-chimeric NaK channel formed an α-helix up to the 
C-terminus (Supplementary Fig. S5c). In the NaK channel struc-
ture (pdb code: 3E86 (ref. 16)), the Pro105 imino group formed  
hydrogen bonds with the carbonyl group of Val100, instead of 
Asn101 (Supplementary Fig. S5c). Isolation of Asn101 from the 
hydrogen-bond networks would make the α-helix turn before 
Pro105 intrinsically unstable and flexible. In the structure of the 
chimera channel, the carbonyl groups of Val100 and Asn101 did 
not form hydrogen bonds with the Pro105 imino group, which 
might extend the α-helix (Supplementary Fig. S5b). This structural 
flexibility could absorb the artificial contortion of the graft of the 
NavSulP C-terminal region. The residues from Leu104 to Glu114, 
which derive from the C-terminus of the NaK channel, also par-
ticipated in the 4HB, but no interaction was observed in the part  
of the 4HB derived from the NaK channel.

The hydrophobic core of the 4HB. The structure suggests that the 
main interaction of the 4HB formation is a hydrophobic interac-
tion among Val246, Leu250, Ile253 and Leu257 (Fig. 3a). All 4 
single-point mutations affecting the hydrophobic core (V246R, 
L250R, I253R and L257R) reduced the inactivation rates (Fig. 3b; 
Table 1). The voltage-dependence of their inactivation and the volt-
age inducing maximum current were negatively shifted compared 
with those of the wild-type channel (Supplementary Table S1; Sup-
plementary Fig. S6), and were similar to those of the C-terminal  
deletion mutants. These 4 residues from each subunit (16 hydro-
phobic residues) comprise the tightly packed hydrophobic core 
on the axis at the centre of the pore domain. The inactivation 
rate and voltage dependency of the mutant channel of NavSulP 
lacking one of four C-terminal helices, which is a covalently 
linked tandem tetramer in which the fourth subdomain lacks the  
C-terminal region (Tandem∆C239), were similar to that of the  
C-terminal deletion mutant (Figs 2 and 3c; Supplementary Fig. S6e). 
Four helices from each of the four channel subunits were required for  
fast inactivation, as in the wild type. These findings suggest that  
the weaker interactions or breakdown of the 4HB reduce the  
inactivation rate.

The other intersubunit interactions of the 4HB. The C-terminal 
4HB of NavSulP had two other intersubunit interactions (Fig. 4). 
Arg243 formed a hydrogen bond with Thr239 of the adjacent helix 
and interacted with Tyr242 by CH/π stacking (Fig. 4a). Accordingly, 
the inactivation rate and voltage dependency of NavSulP R243E 
were similar to that of the C-terminal deletion mutant (Fig. 4c; 
Supplementary Fig. S7). Neutral mutations of Arg243 and Thr239 
(R243A and T239V) also reduced the inactivation rate (Fig. 4c). The 
Y242A mutations reduced the inactivation rate, whereas the inac-
tivation rate of NavSulP Y242F was not significantly different from 
that of the wild-type protein (Fig. 4c). These findings suggest that 
the interactions of Arg243, the hydrogen bond with Thr239, and the 
CH/π stacking with Tyr242, support the formation of the 4HB and 
accelerate the inactivation rate.

Table 2 | Data collection and refinement statistics.

NaK-NavSulPC239 chimera channel

Data collection
 space group P3121

Cell dimensions:
 a, b, c (Å) 104.2, 104.2, 104.4
 Resolution range (Å) 28.9-3.2 (3.31–3.2)
 Rsym (%) 7.7 (65.4)
 Completeness (%) 92.6 (83.1)
 I/σI 41.1 (4.3)
 Redundancy 8.3 (8.3)

Refinement
 Resolution (Å) 3.2
 no. reflections 10,367
 Rwork/Rfree (%) 29.4/32.0

No. Atoms
 chain A/chain B 1092/1062
 B-factor chain A/chain B
 Helix s0 134.4/109.9
 Pore domain 96.7/103.0
 Four-helix bundle 101.1/97.7

R.m.s. deviations
 Bond lengths (Å) 0.008
 Bond angles (°) 0.9

Highest resolution shell is shown in parenthesis.
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Figure 3 | Crystal structure of full-length NaK–NavSulP C239 chimera 
channel. (a) Crystal structure of the chimera channel of the full-length 
naK and navsulP C239. The C-terminal region of navsulP forms a four-
helix bundle (4HB). Each α-helix of the navsulP subunit is represented in 
green, yellow, red and blue. The naK channel is coloured by light green, 
white, pink and light cyan, corresponding to each navsulP subunit. The 
side chains of hydrophobic residues that compose the hydrophobic core of 
the 4HB are shown as grey space-filling models. The location of Val246, 
Leu250, Ile253 and Leu257 is shown at the left side of the 4HB. (b) The 
inactivation time constants of V246R, L250R, I253R and L257R mutants 
of navsulP, measured from the current traces elicited by step pulses from 
holding potential at  − 140 mV. The time constant of navsulP wild type 
(closed circle, n = 8), V246R (open circle, n = 4), L250R (open square, 
n = 4), I253R (open diamond, n = 4) and L257R (open triangle, n = 5) are 
represented as mean ± standard error. (c) schematic secondary structure 
and representative current traces of tandem-repeated navsulP∆C239, 
resulting from same voltage protocol as that of the C-terminal deletion 
mutants. Four copies of navsulP were connected by 28 amino acid-
long linkers, which are indicated by the red lines. Thrombin recognition 
sites are indicated by the scissors. Tandem-repeated navsulP∆C239 is 
composed of three wild-type navsulP and one navsulP∆C239 of the 
fourth repeat. The current trace drawn in red was obtained at 0-mV 
voltage.
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Another interaction was the salt-bridge of Lys249 with Glu251 
and Glu254 of adjacent subunits (Fig. 4b). This type of interaction 
was not observed in other helical pairs in the asymmetric unit of the 
crystal lattice. The inactivation rate of NavSulP K249E was similar 
to that of NavSulP∆C239 (Fig. 4d). The E251K and/or E254K muta-
tions, however, did not significantly reduce the inactivation rate 
(Fig. 4d). These results suggest that Lys249 is involved in the inter-
action with residues other than Glu251 and Glu254 for accelerating 
channel inactivation.

The role of the 4HB in stabilization of channel tetramer. In addi-
tion to accelerating inactivation, NavSulP 4HB promotes the forma-
tion of the channel tetramer. Purified wild-type protein of NavSulP, 
migrated as two distinct peaks in size-exclusion chromatography, 
and crosslinkage analysis with glutaraldehyde indicated that the 
larger molecular weight peak comprised a NavSulP tetramer, and the 
other peak comprised a dissociated NavSulP monomer (Supplemen-
tary Fig. S8a,b). Most of the NavSulP∆C239 migrated as monomers  
(Fig. 4e; Supplementary Fig. S8c). The R243E and V246R mutations 
also increased the number of monomer peaks (Fig. 4e; Supplemen-
tary Fig. S8d,e). These mutations destabilized the tetramer forma-
tion of the channels in addition to reducing their inactivation rate.

The 4HB accelerates the inactivation via the inner helix. The 4HB 
formation is thought to modify the inactivation mechanism of the 
pore domain, because the C-terminal deletion mutants were func-
tional and capable of full inactivation, albeit at a slower rate (Fig. 1c).  
We previously demonstrated that mutation of the conserved glycine 
residue of the cytosolic part of the inner helix to alanine reduced 
the NavBacs inactivation rate7. The 4HB was directly connected to 
the inner helix (Supplementary Fig. S1a), and superimposition of 
the structure of the chimera channel and NavAb (pdb code: 3RVY8) 
(Fig. 5a) showed that Gly221 of NavSulP, which corresponds to 
the conserved glycine of the inner helix, located in the connection 
between the inner helix and the 4HB (blue in Fig. 5b). NavSulP 
G221A also showed a slower inactivation rate (τinact = 1850 ± 368 ms 
at 0 mV membrane potential: n = 6) than any other deletion or point 
mutation (Fig. 5c), but the purified protein of NavSulP G221A had 
a tetrameric channel that was similar to the wild-type channel in 
size-exclusion chromatography (Fig. 4e; Supplementary Fig. S8f).  
Moreover, the C-terminal deletion mutant of NavSulP G221A 
(NavSulP G221A∆C239) showed an extremely slow inactivation rate 
(τinact = 5088 ± 1143 ms at 0 mV membrane potential: n = 5) and gen-
erated a large deactivation tail current after 90-second depolariza-
tion (Fig. 5d), which indicated that stabilization of the inner helix 
partially defeated the inactivation mechanism of the pore domain. 
Therefore, the inner helix is suggested to be involved in the inactiva-
tion mechanism of the pore domain, and the formation of the 4HB 
would modify the inactivation mechanism through the inner helix.

Discussion
The C-terminal region of NavSulP has a novel mechanism for accel-
erating the channel inactivation rate. The inactivation of NavBacs is 
thought to only occur through the C-type inactivation mechanism 
because NavBacs lack an obvious cytoplasmic domain required for 
inactivation, such as an ‘inactivation peptide’17 or an ‘IMF motif ’18. 
The C-type inactivation mechanism of the sodium channel remains 
unclear, while that of the potassium channel is well understood 
based on the structure of KcsA. In the case of KcsA, it is thought 
that a large rotation of the activation gate, which is the cytosolic 
part of the inner helix, causes the collapse of the selectivity filter 
during C-type inactivation19,20. The 4HB of KcsA reduces the  
C-type inactivation rate by restricting the activation-gate rotation 
with the formation of the 4HB21,22. The NavSulP 4HB contained 
a hydrophobic interaction similar to that of KcsA. Furthermore, 
the NavSulP 4HB also seems to restrict the movement of the inner 
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Figure 4 | The intersubunit interaction of the 4HB. (a) Intersubunit 
interaction around Arg243. Hydrogen bond and CH/π stacking are 
indicated by dashed magenta and orange lines, respectively. (b) The ion 
bridge interaction of Lys249. Dashed cyan line represents ion bridges. 
(c,d) mutational effect of the residues that participated in the interaction 
of Arg243 (c) and Lys249 (d) for the inactivation time constants. The 
inactivation time constants were measured from the current traces elicited 
by step pulses from holding potential at  − 140 mV. The time constant of 
navsulP wild type (closed circle, n = 8), R243E (open circle, n = 4), Y242A 
(closed triangle, n = 6), Y242F (open triangle, n = 5), T239V (closed 
square, n = 5) and R243A (open square, n = 4) are represented in (c). The 
time constant of navsulP wild type (closed circle, n = 8), K249E (open 
circle, n = 5), E251K (closed triangle, n = 4), E254K (open triangle, n = 4) 
and E251K/E254K (open square, n = 4), are represented in (d). All values 
are presented as mean ± standard error. (e) sodium dodecyl sulphate-
polyacrylamide gel electrophoresis analysis of tetramer and monomer 
fractions of navsulP wild-type (WT) and mutants in size-exclusion 
chromatography. T and m indicate the tetramer and monomer fractions 
of navsulP proteins in size-exclusion chromatography, respectively. To 
evaluate the amount of protein, proteins were denatured to monomers 
by sodium dodecyl sulphate treatment. The band intensities of the T and 
m lanes represent the amount of tetrameric channels and dissociated 
monomers, respectively. most navsulP∆C239 were dissociated to 
monomers and unable to form channel tetramers.



ARTICLE

��

nATuRE CommunICATIons | DoI: 10.1038/ncomms1797

nATuRE CommunICATIons | 3:793 | DoI: 10.1038/ncomms1797 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

helix, because the 4HB-grafted NaK–NavSulPC239 chimera chan-
nel does not change the closed structure of the original NaK channel  
(pdb accession code: 2AHY (ref. 15)). Although they have similar roles  
in the restriction of the cytosolic part of the inner helix, the 4HB 
of NavSulP and KcsA have opposite effects on the inactivation 
rate. The findings of this study suggest that the scheme of NavSulP  
inactivation differs from that of KcsA C-type inactivation.

The structure of NavAb8 allows us to evaluate the effect of the 
4HB formation on the inner helix of the NavSulP pore domain. The 
pore domain of NavAb seems to form a closed structure, although 
the voltage sensor domains are in an activated state8. The cytosolic 
C-terminal region of NavAb was not determined, but located in  
the crystal lattice. On the basis of the sequence similarity, the  
C-terminal region of NavAb would form the 4HB and make the inner 
helix a closed form, as does that of KcsA and NavSulP. On depolariza-
tion, while the voltage sensor domains open the activation gate, 4HB 
would generate a counter force to close the gate of the inner helix. The 
counter force could promote the conformational change of the inner 

helix to inactivate the pore domain (Fig. 6). Stabilization of the inner 
helix with the G221A mutation reduced the inactivation rate (Fig. 5c). 
Formation of the 4HB would require more time to promote the con-
formational change of the rigid inner helix of NavSulP G221A than 
that of wild-type NavSulP (Supplementary Fig. S9a). The inner helix of 
C-terminal deletion NavSulP would be free from the counter force of 
4HB formation, and spontaneously enter into the inactivated state with 
a slower rate (Supplementary Fig. S9b). This could be the reason for the 
slower inactivation rate of the C-terminal deletion mutant of NavSulP.

It is possible that the inactivation of NavBacs only occurs 
through the collapse of the selectivity filter, which is called ‘C-type 
inactivation’, because the inactivation of NaChBac is very sensitive 
to mutations around the selectivity filter23,24. The selectivity filter 
of NavAb (red in Fig. 5b) is elaborately constructed with a well-
developed intersubunit hydrogen-bond network8. Similar hydro-
gen-bond networks are not observed in the selectivity filter of the 
potassium channel25,26. If the selectivity filter breaks down in the 
inactivation of NavSulP, the 4HB might promote the collapse of  
the delicate selectivity filter through the conformational change 
of the inner helix. The structure of NavAb, however, was the only 
structure in the pore domain of Nav. To reveal the inactivation 
mechanism of NavBacs, it is necessary to determine the structure 
of the pore domain of NavSulP and homologues in other states and 
perform a detailed comparison of them.

The formation of NavSulP 4HB had another effect on channel 
activity in addition to accelerating the channel inactivation rate. 
The deletion and destabilization of 4HB caused a negative shift of 
the voltage producing the maximum current and steady-state inac-
tivation as well as reduction of the inactivation rate (Supplementary 
Table 1 and the current-voltage relation curves of Fig. 2; Supple-
mentary Figs S6 and S7). The negative shift of the voltage produc-
ing the maximum current indicated that these mutants could enter 
open state more easily at negative membrane potentials. NavBacs 
are spontaneously inactivated after activation. Therefore, the nega-
tive shift of the steady-state inactivation of the 4HB disrupted 
mutants was thought to be caused by the negative shift of activa-
tion. This result suggested that the formation of the cytosolic 4HB 
would have a supportive role for closing the activation gate of the 
inner helix in the resting state, whereas the voltage sensor domain 
could be the main player for keeping the pore domain closed. As 
well as the acceleration of inactivation rate could reduce excess 
ion flux after activation, the 4HB formation could contribute to  
suppress accidental ion flux even in the resting state.

The 4HB of NavSulP has a remarkable role in the stabilization of 
the channel tetramer as well as the modulation of channel proper-
ties, but those of the other homologues (NaChBac14, NavBacL and 
NavSheP) had a smaller impact on the inactivation rate (Supple-
mentary Fig. S3, Supplementary Table S1). The length of the loop 
between the inner helix and the C-terminal 4HB varies for each 
NavBacs homologue. The primary sequence alignment showed that 
members of the NavSulP group have a shorter loop than those of 
the other groups (Fig. 1a; Supplementary Fig. S1a). Furthermore, 
the residues of NavSulP (Thr239, Tyr242 and Arg243), which are 
involved in the intersubunit interactions of the 4HB, are only con-
served in the NavSulP group. Acceleration of the inactivation rate 
by the 4HB formation might be a unique mechanism of NavSulP 
and channels in the same cluster. Although the C-terminal dele-
tion of the NavBacs of Bacillus species (NaChBac and NavBacL) 
did not affect the inactivation rate, our previous study showed that 
stabilization of the inner helix by a glycine-to-alanine mutation also 
reduced their inactivation rate7. In the Bacillus species cluster, the 
mobility of the inner helix, which is not modulated by the formation 
of the 4HB, would regulate their inactivation rate as well as that of 
NavSulP. NavSheP and NavAb have no glycine residue in the inner 
helix7,8, and their inactivation rate would be less modulated by the 
4HB. The inactivation rates of NavBacs are thought to be regulated 

a
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1 nA

G221A

G221A∆C239

20 s

1 nA

c d 0 mV at 90 s

Vhold=–140 mV

b

Figure 5 | Comparison of the structure of the chimera channel of 
NaK–NavSulP C239 with that of NavAb. (a) superimposition of the 
inner helix and the C-terminal 4HB of the naK–navsulPC239 chimera 
channel structure and whole navAb structure (PDB code, 3RVZ) by ribbon 
diagrams. The inner helices of the chimera channel are superimposed on 
those of navAb. The naK part of the chimera channel is shown in white, 
and the navsulP part of the chimera channel is shown in green. The 
navAb is shown in red. The side-chains of the residues of the hydrophobic 
core are indicated by grey-coloured ball models (Val246, Leu250, Ile253 
and Leu257 are in grey). (b) The ribbon diagram of the pore domain of 
navAb and the superimposed 4HB of the chimera channel. The part of 
the selectivity filter and the residues participating in the intersubunit 
hydrogen-bond network around the selectivity filter is indicated in red, 
and the residue corresponding to the conserved glycine in the inner helix 
is in blue. (c) Representative traces of the current of navsulP G221A 
resulting from same voltage protocol as that of the C-terminal deletion 
mutants. The current trace drawn in red was obtained at 0-mV voltage. 
(d) Representative trace of the current of navsulP G221A ∆C239 resulting 
from the 0-mV voltage depolarization protocol (90 s) shown above.
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by the rigidity of the inner helix and the effect of the cytosolic 4HB 
in a homologue-dependent manner. NavSulP seems to depend on 
the cytosolic C-terminal region to modulate the channel activity 
more than the other homologues.

Tetramerization of the cytosolic C-terminal helices is observed 
in the crystal structure of various tetrameric ion channels, and  
is thought to have various roles in channel function9,21,27. The 
NavSulP 4HB has a unique role in stabilization of the channel 
tetramer as well as in acceleration of the inactivation rate. Forma-
tion of the 4HB accelerates the inactivation rate of NavSulP, but  
reduces that of KcsA. Our results suggest that the scheme of the 
inactivation of sodium channels is different from that of potassium 
channels.

Methods
Cloning of NavSulP and site-directed mutagenesis. The NavSulP DNA was 
cloned from S. pontiacus (JCM No. 21789), as described previously7. The following 
primers were used for cloning: 5′-CGCGGATCCATGGTGGGCACGGTAAA 
CATG-3′ and 5′-CGCGGATCCCTGTCGGCTGTGCTCTGCCAG-3′. Site-
directed mutagenesis was accomplished by polymerase chain reaction, using 
high-fidelity Pfu DNA polymerase (method by Stratagene). To generate the series 
of tandem NavSulP tetramers, four copies were covalently connected by LVPR 
GSXXGSSHHHHHHSSGLVPRGSSH linkers, in which ‘XX’ denotes the amino 
acids resulting from the translation of the recognition sites for the restriction 
enzymes (EP, TR and GT for the EcoRI, MluI and Acc65I recognition sites,  
respectively). All clones were confirmed by DNA sequencing.

Expression and purification of NavSulP. Proteins were expressed in the Escheri
chia coli KRX strain (Promega). Cells were grown at 37 °C to an OD600 of 0.8, 
induced with 0.1% rhamnose (Wako), and grown for 16 h at 18 °C. The cells were 
suspended in TBS buffer (20 mM Tris–HCl pH 8.0, 150 mM NaCl), and lysed using 
a French Press (SLM AMINCO) at 12,000 psi. Membranes were collected by cen-
trifugation (100,000g, 1 h, 4 °C) and solubilized by homogenization in TBS buffer 
containing 40 mM CYMAL-6 (Anatrace). After centrifugation (40,000g, 30 min, 
4 °C), the supernatant was loaded onto a HIS-Select cobalt affinity gel column 
(Sigma). The column was washed with 10 mM imidazole in TBS buffer containing 
3 mM CYMAL-6 and 0.1 mg ml − 1 E. coli polar lipid (Avanti), and the protein was 
eluted with 300 mM imidazole. Eluted protein was purified on a Superdex-200 gel 
filtration column in 150 mM NaCl, 20 mM HEPES-NaOH pH 8.0, 3 mM CYMAL-6 
and 0.1 mg ml − 1 E. coli polar lipid. The crosslinking reaction with 1.0 mM glutar-
aldehyde was performed for 30 min at 37 °C. Purified proteins were resolved on 
7.5–20% sodium dodecyl sulphate-polyacrylamide gel electrophoresis gradient gels 
(Wako) and stained with silver staining.

Electrophysiology of mammalian cells. All electrophysiological experiments 
were performed as described previously7. The pipette solution contained 105 mM 
CsF, 35 mM NaCl, 10 mM EGTA and 10 mM HEPES-CsOH pH 7.4. The bath 
solution contained 150 mM NaCl, 1.5 mM CaCl2, 1 mM MgCl2, 2 mM KCl, 10 mM 

HEPES-NaOH pH 7.4 and 10 mM glucose. Whole-cell currents were recorded with 
a patch–clamp amplifier (EPC10). Patch electrodes were pulled from borosilicate 
glass and had resistances of 1–3 MΩ. Current amplitudes ranged from 500 pA to 
10 nA. Series resistance was compensated up to 70% to reduce all series resistance 
errors to  < 20 mV. Cells in which series resistance was  > 10 MΩ were discarded. For 
measurement of tandem-repeated tetramers, 10 U ml − 1 thrombin was added to the 
pipette solution. All experiments were conducted at 25 ± 2 °C. The activation time 
constant (τact) was defined as the time from 10% to 90% of the peak current. The 
inactivation time constant (τinact) was defined as the time from the peak current to 
1/e of the peak current. All results are presented as mean ± standard error.

Purification of the NaK–NavSulP chimera channel. The NaK channel from  
Bacillus weihenstephanensis (NBRC No. 101238) was cloned into the modified pET-
21b vector. The NaK–NavSulP chimera channel was constructed by inserting the 
C-terminal region of NavSulP (239–263) between the C-terminal end of NaK and 
the thrombin digestion site of pET-21b vector. The chimera channel was expressed 
in E. coli KRX cultures at 25 °C. The purification procedure of the chimera channel 
was similar to that of full-length Nav homologues. In this procedure, CYMAL-6 
was replaced with DM (n-decyl-β-d-maltopyranoside, Anatrace, anagrade), and  
E. coli polar lipid was removed. For membrane solubilization, 20 mM DM was 
used. In the wash and eluate, 5 mM DM was used. Eluate of the chimera channel 
was concentrated for further purification. Concentrated protein (~15 mg ml − 1) 
was purified on a Superdex-200 gel filtration column in 150 mM NaCl, 20 mM 
Tris–HCl pH 7.5, 5 mM DM.

Structure determination of the chimera channel. Crystals were grown by hang-
ing-drop vapour diffusion at 20 °C by mixing 2-µl volumes of protein solution 
(4–6 mg ml − 1) and reservoir solution (19–21% polyethylene glycol monomethyl 
ether 550, 50 mM magnesium nitrate and 100 mM sodium citrate, pH 5.6). All data 
were collected at BL38B1 (Wavelength: 0.978 Å) of SPring-8 and processed using 
HKL2000 (ref. 28). The crystals were of space group P3121 with cell dimensions 
a = b = 104.3, c = 104.8, α = β = 90°, γ = 120° and contained two subunits per asym-
metric unit. The four-fold axis of the channel tetramer coincided with one of the 
crystallographic two-fold symmetry axes. The initial phase was obtained by the 
molecular replacement method with PHASER29 using the full-length NaK channel 
(pdb code: 2AHY15) as the initial model at 3.8 Å. The model was constructed in  
COOT30 and refined in refmac5 (ref. 31) to 3.2 Å with Rwork 29.4% and Rfree 32.0%. 
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