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The Par3 polarity protein is an exocyst receptor
essential for mammary cell survival
Syed Mukhtar Ahmed1 & Ian G. Macara1

The exocyst is an essential component of the secretory pathway required for delivery of

basolateral proteins to the plasma membranes of epithelial cells. Delivery occurs adjacent to

tight junctions (TJ), suggesting that it recognizes a receptor at this location. However, no

such receptor has been identified. The Par3 polarity protein associates with TJs but has no

known function in membrane traffic. We now show that, unexpectedly, Par3 is essential for

mammary cell survival. Par3 silencing causes apoptosis, triggered by phosphoinositide

trisphosphate depletion and decreased Akt phosphorylation, resulting from failure of the

exocyst to deliver basolateral proteins to the cortex. A small region of PAR3 binds directly to

Exo70 and is sufficient for exocyst docking, membrane-protein delivery and cell survival.

PAR3 lacking this domain can associate with the cortex but cannot support exocyst function.

We conclude that Par3 is the long-sought exocyst receptor required for targeted membrane-

protein delivery.
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C
ell polarity is defined largely by the segregation of the cell
cortex into domains populated by functionally distinct
membrane proteins. Throughout the animal kingdom,

these domains are formed by a conserved group of polarity
proteins, which includes Par3, Par6 and atypical protein kinase C
(aPKC)1. Mammalian epithelia are segregated into apical and
basolateral domains separated by tight junctions (TJs)1,2. Par3, a
large scaffold protein at the apex of the polarity signalling
network, localizes to TJs and to the lateral membrane just beneath
them3,4. The biological functions of Par3 are not fully understood.

It interacts with Par6 and aPKC and is necessary to recruit aPKC
to the apical cortex, which mediates the exclusion of basolateral
proteins from the apical domain3,5–8. It also sequesters TIAM1, a
Rac exchange factor, so as to spatially restrict the production
of RacGTP8, and has been reported to bind many other
proteins including the phosphoinositide phosphatase Pten and
the exocyst complex9–13. However, the biological meaning of
these interactions remains mostly obscure. In addition to the
regulation of cell polarity, Par3 is in some tissues required for cell
survival. Silencing of Par3 expression in the mammary gland, for
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Figure 1 | Loss of Par3 induces apoptosis. (a,b) Knockdown of Par3 in NMuMG or Eph4 cells induces cleaved Caspase-3 activation. The experiments were

repeated at least three times and representative blots are shown. (c) Knockdown of Par3 in NMuMG cells induces Parp cleavage. (d) Immunofluorescence

staining of NMuMG cells showing the activity of Caspases 3 and 7 in NMuMG cells using CellEvent Caspase-3/7 Green ReadyProbes (green) and

phalloidin Alexa594 (red) and Hoechst 33342 (blue). Scale bars, 50mm. (e) Quantification of cleaved Caspase-3 staining in NMuMG cells. Data

represented as the mean percentage of cleaved Caspase-3 compared with control, the graph shows mean±s.e.m. for four experimental replicates and

P value was calculated by the Student’s t-test. (f) Phase contrast images of NMuMG cells treated with shLuc, shPar3 or shPar3þYFP-hPAR3b. Scale bars,

200mm. (g) Immunoblot showing cleaved Caspase-3 induction by Par3 depletion can be reversed by expression of YFP-hPAR3b. (h) Co-culture of

NMuMG cells expressing shLuc plus GFP (green) or shPar3 plus RFP (red) and stained with Hoechst 33342 (blue). The experiment was repeated three

times and a representative image is shown. The boxed region is shown as magnified below. Scale bar, 100 mm. (i) Quantification of cells with normal or

condensed nuclear morphology in the experiment shown in h. Error bars represent mean±s.e.m.
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instance, strongly enhances apoptosis, both in vivo and in
primary mammosphere cultures7,14. Deletion of Par3 in the
mouse epidermis also promotes apoptosis15, but the underlying
mechanism is unknown.

Steady-state levels of membrane proteins depend not only on
transcription/translation but also on the rates of exocytosis and
endocytosis, both subject to multiple levels of control16–18.
Delivery of cargo to basolateral membranes requires the exocyst,
discovered in budding yeast and conserved throughout the
eukaryotes17,19,20. The exocyst is a complex of eight subunits, that
tethers vesicles to the plasma membrane (PM) through interactions
with SNARES, small GTPases and accessory proteins17,21–24. In
mammalian epithelia, the exocyst can associate generally with
membranes through the interaction of Exo70 (Exoc4) and Sec3
(Exoc1) subunits with phosphoinositides25–29, but this interaction
cannot provide the targeting information needed to deliver the
exocyst and membrane proteins to the TJ zone. Such localized
docking in epithelia suggests that the exocyst must recognize a
receptor in this region of the membrane. However, no such
receptor has been identified.

We now demonstrate that Par3 is essential for the survival of
mammary epithelial cells (MECs) through recruitment of exocyst
to intercellular junctions. Silencing of Par3 causes a substantial
drop in phosphoinositide-(3,4,5)-trisphosphate (PIP3) levels,
which depresses AKT phosphorylation, thereby triggering
apoptosis. This cascade of effects is caused by a defect in lateral
membrane-protein delivery, and loss of exocyst localization to
TJs. Silencing of exocyst subunits phenocopies Par3 depletion.
We identify a small region of PAR3 that binds the exocyst and
this isolated domain is sufficient, if targeted to membranes, to
rescue cell survival in the absence of endogenous Par3. A full-
length mutant of Par3 that lacks this domain cannot rescue
survival. Therefore, we conclude that Par3 functions as an exocyst
receptor, enabling polarized recruitment to the TJ zone of the
epithelial PM.

Results
Par3 depletion in mammary epithelial cells induces apoptosis.
To gain insight into why Par3 is required for cell survival, we used
two polarized epithelial cell lines, NMuMG and Eph4, which are
derived from the murine mammary gland. Both cell lines have
properties similar to luminal epithelial cells. Par3 properly loca-
lizes with the TJ protein Zo-1 and is distinctly separated from
b-catenin, which marks the lateral membrane (Supplementary
Fig. 1a–h). We silenced Par3 with a previously validated short
hairpin (shPar3)7,30. Within 2 days, cleaved Caspase-3 (Casp3)
and cleaved PARP were detected in NMuMG cells (Fig. 1a,c). By
3 days, the majority of the cells had detached from the dish, and
many of the remaining cells (B60%) stained positive for cleaved
Casp3, as compared with cells transduced with a control shRNA,
shLuc (Fig. 1d,e and Supplementary Fig. 2a,b). Flow cytometry
using Annexin V (Anxa5) exposure to mark apoptosis also
revealed extensive cell death (B55% of the population) in
response to Par3 depletion (Supplementary Fig. 2c). Silencing of
Par3 in Eph4 mammary cells as well as primary mammary
epithelial cells also induced Casp3 cleavage (Fig. 1b and
Supplementary Fig. 2d). Expression of human PAR3 fused to
YFP, which is insensitive to the mouse shRNA, completely
rescued the survival of cells depleted of endogenous Par3
(Fig. 1f,g).

Apoptosis caused by loss of Par3 is cell autonomous. We next
asked if apoptosis triggered by depletion of Par3 is cell autono-
mous. NMuMG cells were transduced separately with lentivirus
to express shLuc plus YFP, or shPar3 plus RFP, then mixed at a

1:1 ratio and co-cultured. Three days post transduction, when
apoptosis had begun, we stained with Hoechst 33342 to
identify cells with condensed nuclei. Notably, whereas green cells
expressing shLuc were phenotypically normal, neighbouring red
cells expressing shPar3 exhibited condensed nuclei and extrusion
from the epithelial sheet (yellow arrowheads) (Fig. 1h). About
60% of the cells expressing shPar3 showed condensed nuclear
staining, whereas o10% of the control cells showed a similar
phenotype (Fig. 1i). We conclude that apoptosis induced by Par3
depletion is cell autonomous.

Apoptosis results from the inactivation of Akt. Depletion of
Par3 in NMuMG cells resulted in decreased phosphorylation of
Foxo3a at residue S253 (Fig. 2a). Knockdown of Par3 also
decreased the phosphorylation of Bad at S136 (Fig. 2b). The pro-
apoptotic protein Bim showed a concomitant increase in
expression level (Fig. 2c).

Foxo3a and Bad are known targets of Akt31, suggesting
that loss of Par3 might somehow interfere with Akt activation.
Indeed, silencing of Par3 caused a fivefold decline in pAkt
(Fig. 2d,e). Immunofluorescence showed a similar decrease in
pAkt (Supplementary Fig. 4a). Similarly, Par3 depletion from
Eph4 also reduced pAkt levels (Supplementary Fig. 4e). To assess
if a similar phenotype occurs in primary MECs we purified
luminal mammary epithelial cells from mice by fluorescence-
activated cell sorting (FACS; Fig. 2f and Supplementary Fig. 3a,b).
Depletion of Par3 in these freshly isolated luminal cells also
induced cell death and extrusion within 3 days post transduction
with shPar3 (Fig. 2g). Phospho-Akt was decreased and cleaved
Casp3 increased (Fig. 2h). We note that the slight deformation of
bands seen in the shPar3 treated samples is caused by the manner
cells had to be harvested to minimize cell losses, which
inadvertently left some BSA from the culture media, resulting
in distortion in gel migration. Although the phenotype was less
severe compared with NMuMG cells, the effects were significant
(Fig. 2i), demonstrating that the effects of Par3 depletion on
survival are intrinsic to mammary epithelial cells and are not an
artefact of using cell lines.

Akt is phosphorylated by Pdk1, which is activated by PIP3
(refs 32,33). Consistent with this mechanism inducing apoptosis,
treatment of NMuMG cells with the PI3-K inhibitor LY294002
triggered a threefold increase in AnnexinV-positive cells
(Supplementary Fig. 4c,d). Moreover, 50 nM of the Akt inhibitor
MK-2206 induced cell death within 20 h of drug treatment
(Supplementary Fig. 4b). Finally, we found that a constitutively
active mutant of human AKT1 (AKT-CA)34 efficiently prevented
the induction of Casp3 cleavage in cells depleted of Par3
(compare lanes 2 and 3, Fig. 2j). Together, these data show that
mammary epithelial cells are exquisitely sensitive to survival
signals from Akt, and that, unexpectedly, Par3 expression is
essential to maintain this signal.

Depletion of Par3 reduces PIP3 levels. Par3 might act by
supporting PIP3 production at the PM, or by more directly reg-
ulating Akt phosphorylation. To distinguish these possibilities, we
quantified PIP3 in NMuMG cells by immunoassay. The level was
decreased by 50% in cells depleted of Par3 (Supplementary
Fig. 4f). We also used a biosensor, consisting of a PH domain-
AKT-GFP fusion, to localize PIP3 in intact cells, together with
mApple to mark transfected cells (Fig. 2k). Expression of shPar3
caused a twofold reduction in PH-AKT-GFP localization to the
cell cortex (Fig. 2l).

pAkt is not maintained through Pten association with Par3.
PIP3 is hydrolysed by the tumour suppressor phosphatase and
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tensin homology protein (Pten), which has been previously
shown to bind Par3 both in Drosophila and mammalian
cells10,11,35. Therefore, we asked whether Pten regulates Akt in
NMuMG cells. As expected, silencing of Pten increased Akt
phosphorylation. Co-expression of shPten also reversed the drop
in Akt phosphorylation and the Casp3 cleavage caused by
shPar3 (Fig. 3a, compare lanes 2–4). Next, we asked if the
interaction between Pten and Par3 is important for cell
survival. We first attempted to confirm the interaction by co-
immunoprecipitation with either endogenous Pten or over-
expressed HA-PTEN, but could not detect significant binding,
under conditions in which endogenous aPKC co-precipitated
robustly with Par3 (Supplementary Fig. 4g). Nonetheless, based

on data from synthetic peptide interactions of Pten with Par3
(ref. 10), we mutated the PAR3 PDZ3 domain at two residues
reported to be essential for Par3-Pten binding, (R596D,K598D)10.
This mutant, PAR3(R596D,K598D), efficiently rescued cell
survival (Fig. 3b). Together, these experiments argue that a
Par3-Pten interaction is not involved in mammary cell survival
signalling.

Post-Golgi membrane trafficking is perturbed by Par3 loss. An
alternative explanation for decreased PIP3 production would be a
failure of PI3-K recruitment to the PM. In mammalian epithelia,
PI3-K is associated with the E-cadherin:b-catenin complex36.
Therefore, we assessed E-cadherin (CDH1) localization in
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NMuMG and Eph4 cells after Par3 depletion. To block apoptosis
we added Caspase inhibitor Ac-DEVD-CHO. Interestingly,
silencing of Par3 in both cell types prevented E-cadherin
localization to intercellular junctions. Instead, E-cadherin
appeared to be trapped in vesicle-like structures (Fig. 4a).
Failure of E-cadherin to localize properly at the cell cortex did
not significantly affect its stability (Fig. 4b,c). To evaluate
specificity, we stained for another lateral membrane protein,
Naþ -Kþ -ATPase (NKA; Fig. 4a). Strikingly, Par3 depletion in
NMuMG or Eph4 cells drastically impaired NKA localization to
the PM, and the protein instead accumulated in an intracellular
compartment, in a similar fashion to E-cadherin. The apical
membrane protein Muc1 was not mislocalized in response to
Par3 silencing (Supplementary Fig. 5a), suggesting that the defect
may be restricted to lateral membrane traffic.

An important question was whether this defect is upstream or
downstream of the decreased PIP3 levels and Akt activity. Co-
depletion of Pten with Par3, which should increase PIP3, did not
rescue normal E-cadherin localization (Supplementary Fig. 5b).
Furthermore, it is unlikely that the phenotype is caused by
disruption of Par3-Pten binding, as expression of PAR3(R596D,
K598D) was able to rescue E-cadherin to the PM (Supplementary
Fig. 5c). We next treated NMuMG cells with the Akt inhibitor
MK2206 (50 mM). Within 8 h of MK2206 treatment, cells began
to round up, at which point the cells were fixed and stained for
E-cadherin. Despite efficient blocking of Akt phosphorylation,
E-cadherin localization at the junctions remained unaffected
(Supplementary Fig. 5d). These data support the conclusion that
the decreases in PIP3 and in Akt phosphorylation caused by Par3
silencing are consequences rather than causes of the defect in
lateral membrane-protein localization.

This failure of lateral membrane proteins to localize at
the cortex might be caused by defective delivery or by
increased endocytosis37. To distinguish these possibilities we
first determined whether Par3 depletion impacts temperature-
sensitive VSVG-GFP fusion protein exit from the Golgi and
sorting to the lateral membrane38,39. Cells expressing VSVG-GFP
were initially grown at 40 �C to trap the protein in the
endoplasmic reticulum. They were then switched to 32 �C for
2.5 h. Control cells, transfected with shLuc shRNA, showed
cortical GFP fluorescence. However, Par3 silencing caused the
accumulation of GFP-positive spots throughout the cytoplasm,
indicative of failed PM delivery of VSVG-GFP (Fig. 4d). We next
blocked post-Golgi transport using Brefeldin A (BFA)40,41.
Giantin staining in NMuMG and Eph4 cells confirmed
disruption of the Golgi apparatus. Within 3 h of BFA addition
for NMuMG cells, and 7 h for Eph4 cells, E-cadherin was reduced
at sites of cell–cell junctions (Fig. 4e). Importantly, treatment of
NMuMG cells with BFA for 16 h also led to increased cleaved-
Casp3 and was accompanied by a substantial reduction in pAkt
(Fig. 4f). Together, these data support a model in which Par3
seems to be required for the delivery of lateral membrane proteins
from the Golgi, and failure to deliver these proteins results in the
loss of PIP3, decreased Akt activity, and apoptosis.

E-cadherin co-localizes with Rab11 in Par3-depleted cells. Rab
proteins, particularly Rab11 and Rab8, have been previously
shown to coordinate with the exocyst to regulate the asymmetric
distribution of proteins in epithelial cells to form polarized tissue
structures13. To this end, we asked if the intracellular E-cadherin
in cells depleted of Par3 co-localizes with Rab11 or Rab8. Because
antibodies to these proteins are unreliable, we generated stable
NMuMG and Eph4 cell lines expressing YFP-tagged Rab11 or
Rab8. In both shLuc- and shPar3-treated cells many of the puncta
containing E-cadherin were positive for Rab11 and to a lesser
extent Rab8 (Fig. 5a,b). Strikingly, the larger intracellular
E-cadherin structures that we saw in Eph4 cells were frequently
also Rab11-positive as well as Rab8-positive. From these
experiments we conclude that the intracellular E-cadherin puncta
are most likely exocytic and/or recycling endocytic vesicles.

Loss of exocyst proteins phenocopies loss of Par3. The exocyst
is required to capture and guide secretory vesicles to the PM
before membrane fusion can occur42,43. In mammalian epithelial
cells the exocyst complex is required for the delivery of lateral
membrane proteins, such as E-cadherin and NKA44. The exocyst
has been also suggested to converge with the Par3 complex at the
apical membrane initiation site during polarization13, but no
requirement of the exocyst for apical membrane delivery has
been demonstrated. Moreover, several papers have reported an
interaction of exocyst with Par3 or with Par6 or aPKC13,45,46, but
the function of these interactions is obscure. Therefore, we asked
if the exocyst is involved in the membrane delivery defect caused
by silencing of Par3.

To test if Par3 depletion affects exocyst localization, NMuMG
cells were transduced with shLuc or shPar3 and stained for Sec8.
Whereas a fraction of Sec8 localized to the cellular junctions in
shLuc treated cells, Sec8 was mostly in vesicles and the nuclear
compartment in cells depleted of Par3 (Fig. 6a).

Silencing of Sec8 caused E-cadherin mislocalization in both
NMuMG and Eph4 cells (Fig. 6b). Moreover, apoptosis was
triggered in NMuMG cells by two different shRNAs against Sec8
(Fig. 6c and Supplementary Fig. 6a,b) or an shRNA-targeting
Sec10 (EXOC5) (Fig. 6d and Supplementary Fig. 6c), which
efficiently reduced the respective protein levels. pAkt levels were
also significantly reduced (Fig. 6c,d), and expression of AKT-CA
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in NMuMG cells rescued shSec8-mediated apoptosis (compare
lanes 3 and 4, Fig. 6e).

Exocyst binds a region within the Par3 lysine-rich domain.
Immunoprecipitation with anti-Myc antibody to capture
expressed Myc-PAR3 co-precipitated endogenous SEC8 from
HEK293T cells (Fig. 7a). Conversely, immunoprecipitation of
endogenous Sec8 from NMuMG cells co-precipitated endogenous
Par3 (Fig. 7b). Staining for the exocyst component Sec6 in

NMuMG cells expressing GFP-Par3 showed that the two
proteins mostly co-localize at the cell cortex. Some intracellular
punctate structures were also dual positive for both the proteins
(Fig. 7c).

Previously, it was reported that the exocyst can interact with
atypical PKCs46. Therefore, we tested if the exocyst interaction
with Par3 is bridged by aPKC. Depletion of Par3 reduced aPKC
co-precipitation with Sec8 (Supplementary Fig. 7a); conversely,
however, silencing of aPKC protein levels did not affect Par3
co-precipitation with Sec8 (Supplementary Fig. 7b).
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Representative images are shown from one experiment. (e) Localization of E-cadherin and Giantin upon BFA (20 mM) treatment in NMuMG cells (3 h)

or Eph4 cells (7 h). Experiments were replicated three times and representative images are shown. White dashed boxed ROIs shown in enlarged images.

White dashed lines shown as fluorescent intensity profiles of E-cadherin staining across a single cell. (f) pAkt and cleaved Caspase-3 levels in NMuMG

cells after BFA (10 or 20mM) treatments for 26 h. All scale bars, 20mm.
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One of the key responses to Par3 depletion is the mislocaliza-
tion and activation of aPKC6,7,47. Hence, we reasoned that cells
might undergo apoptosis because of inappropriate substrate
phosphorylation by aPKC. However, co-silencing aPKC in cells
where Par3 was depleted did not rescue survival (Supplementary
Fig. 7c). We conclude that apoptosis in these cells is aPKC-
independent and that aPKC is not required for the Par3-exocyst
interaction.

Using truncation mutants of Par3, we found that a region
containing residues 967-1089, which contains a lysine-rich
domain (LRD), was crucial for interaction with the exocyst
(Supplementary Fig. 7d–g). This region is highly conserved
between mammals (Fig. 7d) and to a lesser extent with the
Drosophila homologue, Bazooka and Caenorhabditis elegans Par3.
We added an N-terminal GST tag to the LRD, PAR(967–1045),
and purified the protein from Escherichia coli (Fig. 7e,f). This
GST fusion was incubated with whole-cell lysates from 293 T cells
and captured on Glutathione beads. SEC8 robustly co-purified
with the GST fusion, whereas little or no SEC8 bound to GST
alone (Fig. 7k). Moreover, the purified GST-PAR3 fragment
specifically co-precipitated recombinant EXO70-His (Fig. 7m),
demonstrating that the interaction with this exocyst component is
direct.

The Par3-LRD has been previously shown to associate with
phosphoinositides48. We confirmed these findings by performing
lipid strip and liposome-binding assays using the purified
LRD fragment, which showed that this fragment can bind
diverse phosphatidylinositol phosphates as well as phosphatidic
acid, but had little or no binding to other phospholipids
(Fig. 7g–j). We also directly visualized the binding of Par3-LRD
to lipids using giant unilamellar vesicles (GUVs) containing

phosphatidylinositol phosphates and phosphatidic acid. Purified
GST-mApple-Par3-LRD decorated the GUVs within 5–10min of
incubation and was uniformly spread over the GUV surface
within 15min (Fig. 7h).

Next, we asked if binding to phospholipids is essential for the
Par3-exocyst interaction. We removed lipids from both purified
LRD and HEK293T cell lysates using lipid-adsorbent resin and
performed GST capture experiments. Both lipid-clarified and
naive samples bound to SEC8 equally well (Fig. 7k). To determine
if the multiple Lys residues in the region are necessary for exocyst
binding, we treated purified PAR3-LRD with citraconic anhy-
dride at pH 8.0 to block reactive primary amine groups. An
O-phthaldialdehyde fluorimetric assay confirmed that at least half
of the available Lysines were blocked by citraconic anhydride
treatment (Supplementary Fig. 7i). This treatment reduced PAR3-
LRD binding to phospholipids, but PAR3-LRD binding to exocyst
was unaffected (Fig. 7l and Supplementary Fig. 7h).

Together, these data argue that the exocyst binds to the LRD
region of Par3 independent of its phospholipid binding, and
probably does not require multiple lysine residues.

The LRD restores cell survival and E-cadherin localization. To
test if the Par3-exocyst interaction is sufficient to rescue cell
survival, we incorporated a myristoylation sequence at the
N-terminus of mApple-PAR3(710-1089). This construct effi-
ciently localized at the cell cortex (Fig. 8a). We then expressed
shPar3 in wild-type NMuMG cells or in cells stably expressing the
myr-mApple-Par3(710-1089). Strikingly, expression of myr-
mApple-PAR3(710-1089) completely rescued the survival of cells
depleted of endogenous Par3 (Fig. 8d,e), reversed the drop
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in pAkt levels (Fig. 8b,c), and partially rescued E-cadherin loca-
lization at the cell cortex, although the cells did not appear to be
correctly polarized (Fig. 8f). Interestingly, expression of myr-
PAR3(710-1089) promoted E-cadherin localization to inter-
cellular junctions even in control NMuMG cells (Fig. 8f). We also
observed that Sec6 localized at the junctions in cells expressing
shLuc, was disrupted by Par3 depletion, but was restored almost
to normal junctional levels upon introduction of the myr-PAR3
exocyst-binding fragment (Fig. 8g–i). We infer that the exocyst-
binding domain of Par3 is sufficient, if membrane-associated, to
rescue cell survival and the lateral enrichment of both the exocyst
and membrane proteins such as E-cadherin.

The LRD is necessary to rescue cell survival. Finally, we deter-
mined that the deletion of either of two small regions (amino
acids 990-1018 or 1014-1043) within the LRD independently
were sufficient to disrupt the Par3-exocyst interaction (compare
lanes 2–4; Fig. 9a). To determine if these deletion mutants can
localize to the PM correctly, we expressed YFP-tagged wild-type
PAR3, PAR3(D990-1018 or PAR3(D1014-1043) in NMuMG
cells. All proteins were expressed at equivalent levels and able
to accumulate at cell–cell junctions (Fig. 9b,c), but neither
PAR3D990-1018 nor PAR3D1014-1043 was able to rescue cell
survival or pAkt levels as robustly as wild-type PAR3 (Fig. 9d–g).
Consistent with these results, expression of PAR3D990-1018 or
PAR3D1014-1043 was unable to fully rescue E-cadherin locali-
zation at the cell–cell junctions (Fig. 9i,j). Given the defects in
adherens junctions we also asked if the Par3-exocyst interaction
is important for TJ formation in NMuMG and Eph4 cells. Loss
of Par3 severely disrupted the TJs in both cell types, and this
could not be rescued by replacing the endogenous Par3 with
PAR3b(D990-1018 or PAR3(D1014-1043) (Fig. 9h).

Discussion
The exocyst is a highly conserved octomeric complex required for
vesicle delivery to regions of the PM actively involved in
exocytosis, such as the bud tip in Saccharomyces cerevisiae, and
the basolateral membranes of epithelial cells17,19,43. It tethers
vesicles to the PM before SNARE-driven membrane fusions22,49–52.
Two subunits of the yeast exocyst, Exo70 and Sec3, possess
polybasic motifs that can bind PIP2 (refs 25–27), and additional
interactions with small GTPases53–57 have been implicated in
the attachment of exocyst to the membrane. In addition, Sec6
may anchor the exocyst to the PM through an unidentified
receptor58,59. In mammalian epithelia, exocyst delivery has been
localized primarily to a region of the lateral membrane adjacent
to the TJ19,23,44. The mechanism through which this spatial
restriction is achieved has not been elucidated but likely requires
a TJ-associated receptor, or a chaperone that delivers the exocyst
to this region. However, no such receptor/chaperone has been
identified to date.

Our work suggests that the polarity protein Par3 can function
as an exocyst receptor, and—surprisingly—this function is
required for the survival of mammary epithelial cells. Par3 is in
the correct location—proximal to the TJs—to act as a receptor,
and several studies have reported interactions between polarity
proteins and the exocyst, including Par3, Par6 and aPKC.
However, functional roles for these interactions have not been
elucidated. Moreover, since the three polarity proteins form a
complex with one another it has been unclear as to which of
them, if any, associate with exocyst directly and which associate
indirectly. In a kidney cell line, the scaffold protein Kibra
(WWC1) was reported to bridge aPKC to the exocyst, a link
required for delivery of the kinase to the leading edge of
migrating cells46. Others have reported direct binding of Par6 to
Exo84 (Exoc8) in vitro45. Another polarity protein, Pals1 (protein
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associated with Lin Seven 1) was described to be important for
the polarized localization of Sec8 and syntaxin4, and for the
distribution of E-cadherin and myelin proteins at the PM of
neurons60. In mammary epithelial cells, we find that Par3 binds
to the exocyst independently of aPKC. A small fragment of Par3
that cannot interact with either aPKC or Par6 associates robustly
with the exocyst through direct association with Exo70. Whether
other components of the exocyst components also directly
associate with Par3 remains to be elucidated. Most importantly,
the expression of Par3 is essential for exocyst function. Silencing
of Par3 causes a profound defect in delivery of lateral membrane
proteins. The exocyst, normally enriched in the region of the TJ,
becomes distributed into internal vesicles. The effects of silencing
Par3 expression are phenocopied by depletion of exocyst
subunits. Expression of a myristoylated fragment of Par3 that
binds to exocyst is sufficient to rescue lateral membrane delivery,
whilst the expression of full-length Par3 lacking this domain
cannot rescue delivery.

The PDZ1 domain of Par3 has been suggested to recruit the
protein to TJs through association with Junctional Adhesion
Molecule-A (JAM-A)61, and interactions with Par6 and aPKC
also help recruitment to the junctions62,63. Therefore, these
interactions provide spatial specificity, enabling the LRD of
Par3 to bind phosphoinositides present in adjacent membrane.

Our previous work showed that the defect in TJ formation in
MDCK cells as a result of Par3-loss could be rescued by
expressing the C-terminal portion of Par3c, a variant which
is unable to bind aPKC and missing the first two PDZ domains8.
Now we show that the exocyst-binding capability of this region
is specifically attributable to this function, because expression of
PAR3b(D990-1018) or PAR3(D1014-1043) in Par3-depleted
NMuMG or Eph4 cells was not able to rescue TJs. We
propose that the interaction of PIP2 with Par3 assures close
proximity by the exocyst to the PM. Exo70 and Sec3 can also
bind phosphoinositides, providing an avidity effect, which will
be further enhanced by the oligomerization of Par3 through the
N-terminal CR1 domain (Fig. 10). The isolated, myristoylated,
exocyst-binding domain of Par3 lacks the spatial specificity of
the full-length Par3, but can enable exocyst docking sufficiently
to rescue cell survival. These results are interesting in the light of
previous observations that the lipid kinase PIPKIg can bind
both to Exo70 and E-cadherin, generating PIP2 pools at nascent
E-cadherin contacts64. In this model, Par3 would provide the
landmark that triggers an initial delivery of E-cadherin, and this
is reinforced by a positive feedback loop, in which local PIP2
production further promotes Par3 and exocyst recruitment,
enhancing delivery of E-cadherin to establish stable adherens
junctions.
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Interestingly, in the C. elegans excretory cell, Par3 concentrates
membrane-localized exocyst proteins to a specific polarized
domain at the lumenal surface, through an unknown mechan-
ism65. Although the Par3 sequence of C. elegans is not highly
homologous to the mammalian protein in the LRD, these
observations suggest that our proposed receptor mechanism is
likely conserved throughout the animal kingdom. However,

further experiments are needed to investigate if the C. elegans
Par3 homologue directly binds to the exocyst.

The consequences of defective exocyst function are profound
in mammary epithelial cells. The key effect is a reduction in
basolateral PIP3 formation, probably because E-cadherin is not
delivered to the PM, resulting in mislocalization of PI-3 K.
Reduced PIP3 leads to decreased phosphorylation of Akt, which
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(h) Confocal images showing TJs in NMuMG and Eph4 cells. Wild-type cells or cells expressing YFP-PAR3bD(990-1018), or YFP-PAR3D(1014-1043) were
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cells. All experiments successfully repeated three times. P values were computed using one-way ANOVA followed by Dunnett’s multiple comparison tests.
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triggers apoptosis. Therefore, the Par3 polarity protein functions
as an important survival factor for mammary epithelial cells.
These new data are consistent with our previous in vivo
observations that depletion of Par3 in the mammary progenitor
cells resulted in severely reduced mammary gland regeneration,
accompanied by increased apoptosis and proliferation66.
However, the level of apoptosis observed in the regenerated
glands was lower than what we observe in vitro—possibly because
of rapid engulfment of apoptotic cells, or the impact of
neighbouring myoepithelial cells or stromal cells in the tissue,
or systemic factors that suppress apoptosis. It is important to
recognize that although apoptosis wins out in untransformed
cells, we and others have shown that loss of Par3 in oncogene-
transformed cells, which can evade apoptosis, reveals a
hyperproliferative and invasive response that enables rapid
tumour growth and metastasis15,30,67. We also note that loss of
Par3 promotes apoptosis in the mouse epidermis15. Nonetheless,
pard3 knockout mice can survive until about E10.5. It is possible
that a truncated version of the Par3 protein containing the
exocyst-binding domain is still produced in these mice, in which
exon3 was deleted, or that another protein, such as the related
Par3-like protein (pard3b), can also function as an exocyst
receptor and compensate for loss of Par3. An important goal for
the future will be to understand the regulation of the Par3/exocyst
interaction, and to identify other possible exocyst receptors.

Methods
Plasmid constructs and other reagents. The pLVTHM-YFP-hPAR3 construct
used here was described previously7. To make YFP-PAR3(R596D,K598D), residues
R596 and K598 of human PAR3 were converted to aspartates by site-directed
mutagenesis PCR. Likewise, all PAR3 mutants used herein were also generated by
site-directed mutagenesis using Phusion High-Fidelity DNA polymerase (New
England Biolabs). PLVTHM-mApple was generated from pLV-YFP, where YFP
was replaced with mApple with a C-terminal multiple cloning site containing:
BamHI, NotI, EcoRI, SpeI and NdeI restriction endonuclease sites. A pLVTHM-
myr-mApple vector was created by adding the myristoylation sequence
MGSSKSKPKDPSQRRRRIRGYL at the N-terminus of the mApple coding
sequence. A constitutively active AKT1 lentiviral construct (AKT-CA-2A-GFP)
was generated in the pLVTHM vector. The coding sequence from the plasmid HA-
AKT1(T308D, S473D), which was a gift from Jim Woodgett (Addgene plasmid
14751)34 was PCR amplified and inserted in the BamHI/EcoRI cassette in frame
with the self-cleaving 2A peptide and with GFP at its C-terminus68. To generate the
PIP3 sensor PH-AKT, the PH domain of human AKT1 was inserted between the
BamHI/EcoRI sites of the pWPI vector to generate a lentiviral YFP-PH-AKT

construct. To make pLV-YFP-RAB8 and RAB11, RAB8 and RAB11 (gifts from Dr
Stephane Angers and Dr Terrence Hébert) were PCR amplified and inserted into
the BamHI/NotI cassette in pLVTHM-YFP vector. To express hPAR3(967–1045)
in bacteria, the fragment was cloned into pGEX-4 T in frame with GST as the
N-terminal fusion protein. To generate GST-MARCKS 151-175, MARCKS aa151-
175 was synthesized as a geneblock (IDT, Inc) and cloned into pGEX-4 T by
Gibson assembly, downstream of the GST tag. All other plasmids used were
described previously. The VSVG-ts045-GFP construct was a gift from Jennifer
Lippincott-Schwartz38. 800 pSG5L HA-PTEN was from William Sellers (Addgene
plasmid #10750)69.

Mouse Par3 shRNA (50-GTAGGCAAGAGGCTCA-30) was described
previously7. The following shRNA clones were purchased from the Sigma
MISSION shRNA library: mouse Sec8 shRNA clones TRCN0000307390 and
TRCN0000298307, mouse Sec10 shRNA clone TRCN0000093547, mouse Pten
shRNA clones TRCN0000322421 and TRCN0000322487 and mouse aPKCl
shRNA clone TRCN0000278129. Knockdown efficiencies with the shRNAs were
determined by immunoblot of the endogenous protein levels after treatment with
shRNA lentiviral particles compared with a shRNA towards the luciferase gene.

For immunoblotting, we used the following antibodies: rabbit anti-Par3
(refs 7,30), rabbit anti-cleaved Casp3 (Asp175) (1:1,000, Cell Signaling Technology,
Clone 5A1E), rabbit anti-Parp (1:1,000, Cell Signaling Technology), mouse anti-b-
tubulin (1:1,000), mouse anti-Myc (1:1,000, clone 9E10), rabbit anti-Gapdh
(1:1,000, Cell Signaling Technology, clone 14C10), rabbit anti-phospho-Foxo3a
(Ser253) (1:1,000, Cell Signaling Technology), rabbit anti-Bim (1:1,000, Cell
Signaling Technology, clone C34C5), rabbit anti-phospho-Bad (Ser136) (1:1,000,
Cell Signaling Technology, clone D25H8), rabbit anti-Bad (1:1,000, Cell Signaling
Technology), rabbit anti-phospho-Akt (Ser473) (1:1,000, Cell Signaling
Technology, clone D9E), rabbit anti-Akt (1:1,000, Cell Signaling Technology),
mouse anti-b-catenin (1:2,000, BD Biosciences, clone 14/Beta-Catenin), rabbit anti-
E-cadherin (1:1,000, Cell Signaling Technology, clone 24E10), mouse anti-GST
(1:2,000, clone GST2), rabbit anti-RFP (1:1,000, Rockland), rabbit anti-2A peptide
(1:1,000, EMD Millipore), rabbit anti-GFP (1:1,000), chicken anti-GFP (1:1,000,
Abcam), rabbit anti-Pten (1:1,000, Cell Signaling Technology, clone 138G6), rabbit
anti-aPKCz (1:1,000, Santa Cruz Biotechnology). For immunofluorescence we used
the following antibodies: rabbit anti-cleaved Casp3 (Asp175) (1:100, Cell Signaling
Technology, Clone 5A1E), chicken anti-GFP (1:250, Abcam), rabbit anti-E-
cadherin (1:200, Cell Signaling Technology, clone 24E10), mouse anti-E-cadherin
(1:200, BD Bioscience, clone 36/E-cadherin), mouse anti-Sec8 (1:100, BD
Biosciences, 14/SEC8), mouse anti-Sec6 (1:100, Novus Biologicals, clone 9H5),
rabbit anti-Sec10 (H-300) (1:1,000, Santa Cruz Biotechnology), rabbit anti-
phospho-Akt (Ser473) (1:200, Cell Signaling Technology, clone D9E),, rabbit anti-
b-catenin (1:500; Sigma). mouse anti-Zo1 (1:500, Life Technologies, clone Zo1-
1A12), and mouse anti-Occludin (1:500, ThermoFisher Scientific). Mouse-anti-
NKA antibody (1:100, clone 6H) was a gift from Michael Caplan. CellEvent
Caspase-3/7 Green ReadyProbes Reagent, Alexa-647 Phalloidin, NucBlue Live
ReadyProbes, Hoechst 33342 and 7-Aminoactinomycin D (7-AAD) were all from
Life Technologies. AnnexinV Apoptosis Detection Kit was from eBioscience. BFA,
Wortmannin, and LY294002 were from Cell Signaling Technology. Ac-DEVD-
CHO Casp3 inhibitor was from BD Pharmingen. MK-2206 was purchased
from Selleck Chemicals. 1,2-dioleoyl-sn-glycero-3-phosphochloine (DOPC),
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1-Stearoyl-2-Oleoyl-sn-
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Glycero-3-phosphate, and 1,2-dioleoyl-sn-glycero-3[phosphoinositol-4,5-
bisphosphate] were purchased from Avanti Polar Lipids.

Stable cell lines. NMuMG or Eph4 cells stably expressing YFP-PAR3 or YFP-
PAR3 mutants were established by lentiviral transductions followed by fluores-
cence-activated cell sorting using the YFP fluorochrome as the marker. Cells were
sorted using BD FACSAria III cell sorter. Similarly, YFP-RAB8 and YFP-RAB11
constructs were expressed using lentiviral transductions; however, cells were not
sorted before performing experiments.

Cell culture and lentiviral transductions and transfections. NMuMG and
HEK293 T cells were obtained from ATCC. Eph4 cells were obtained from
Dr. Jürgen Knoblich (Institute of Molecular Biotechnology, Vienna, Austria).
NMuMG, Eph4, and HEK293T cells were cultured in Dulbecco’s Modified Eagle
Medium (Life Technologies) supplemented with 10% fetal bovine serum (Atlanta
Biologicals), and 1� Penicillin/Streptomycin and Glutamine (Life Technologies)
and maintained in culture as suggested by ATCC. Lentivirus was produced by
transfecting HEK293T cells with the lentiviral packaging vectors psPAX2, pMD2.G
using calcium phosphate precipitation. All lentiviral transductions for protein
expression were performed at an MOI of 5, and all shRNA infections at an MOI of
20 (based on titres measured using 293T cells). NMuMG cells were transfected
using Xfect transfection reagent (Clontech). Transfections in HEK293T cells for
co-immunoprecipitation experiments were performed using calcium phosphate
precipitation.

Flow cytometry analysis of apoptotic cells. Annexin V binding to cells was
assessed to quantify cellular apoptosis by flow cytometry. Cells were harvested by
trypsinization to obtain single cell suspensions. Cells were washed with 1� PBS
followed by 1� binding buffer provided with the Annexin V apoptosis detection
kit (eBioscience). Cells were resuspended in 1� binding buffer at a density of
2� 106 cells per ml; 5 ml of Annexin V-APC was added to 100 ml of the cell
suspension and incubated at room temperature for 15min with rocking, protected
from light. Following antibody labelling, cells were washed twice with 1ml of
1� binding buffer and resuspended in 200 ml of 1� binding buffer together with
7-AAD. Samples were analysed by flow cytometry using the Guava easyCyte 8HT
flow cytometer (EMD Millipore) operated by GuavaSoft version 2.6. Data acquired
were analysed using FlowJo version 9.6.

Isolation of mouse primary luminal mammary epithelial cells. All mice were
housed and handled according to protocols approved by the Institutional Animal
Care and Use Committee of Vanderbilt University to comply with ethical reg-
ulations. The third and fourth mammary gland pairs were removed from 8-week-
old C3H female mice, minced thoroughly with scissors and digested in freshly
prepared Digestion media containing DMEM/F12, 2mgml� 1 Collagenase I
(Roche), 5 ugml� 1 insulin (Sigma), 600Uml� 1 Nystatin (Sigma), 100Uml� 1

penicillin/streptomycin for 1 h at 37 �C with mixing. The epithelial organoids were
collected by centrifugation at 450 g for 5min. The cells pelleted were resuspended in
5ml of DMEM/F12 and centrifuged at 450 g for 15 s. The supernant was removed
and this step was repeated five times. Doing so enriches for epithelial organoids.
After the final wash, cells were resuspended in 0.05% Trypsin/EDTA and incubated
at 37 �C with gentle shaking for 12–15min followed by addition of 2Uml� 1 of
DNase I for 1min. The trypsin and DNase I activity was blocked by adding 0.5ml
of calf serum. Cells were pipetted up and down a several times to dissociate any
residual clumps and filtered with a 40mm cell strainer to collect single cells. After
the isolation of purified epithelial organoids and forming single cell suspensions,
cells were resuspended in ice-cold PBS containing 10mM HEPES, 2mM EDTA
and 2% fetal bovine serum. Cells were then stained for 10min with mouse anti-
CD326(EpCAM)-APC (1:200; eBioscience), rat anti-CD49f-PerCP/Cy5.5 (1:200;
Biolegend). Mouse anti-CD45-PE, rat anti-mouse CD31-PE and rat anti-mouse
Ter119-PE were also added to remove any non-epithelial lineage cells. After
washing once, cells were resuspended in the above buffer and supplemented with
DAPI (1 ugml� 1) and sorted by FACS (BD FACSAria Ill) for EpCAMhigh/
CD49fmed cells as shown in Supplementary Fig. 3. Sorted cells were plated on
laminin coated (1 ugml� 1) plates and grown in freshly prepared MEC medium
containing DMEM/F12, 1� Insulin-transferrin-selenium (Sigma), 5 ngml� 1

EGF, 100Uml� 1 Penicillin/Streptomycin, 20Uml� 1 Nystatin, 5ml fetal bovine
serum, and 1� Glutamax (Gibco) for subsequent experiments.

Measurement of PIP3 levels. PM levels of PIP3 were assessed using PH-AKT-
GFP as a sensor. A stable polyclonal cell line was generated by transducing
NMuMG cells with lentivirus expressing PH-AKT-GFP. Cells were then trans-
duced with shRNAs targeting Luciferase (control) or Par3 in the presence of
Ac-DEVD-CHO (50 mM). Three days after transduction cells were fixed with 4%
paraformaldehyde (EMD Millipore) and imaged using a 63� /1.40 Plan-APOC-
HROMAT oil immersion lens on Zeiss LSM710 confocal microscope. Fluorescence
intensities of PH-AKT-GFP at the PM and in the cytoplasm were measured from
the regions of interests (ROI) of cells using ImageJ software (ver 1.46r for Mac) and
reported as a frequency distribution histogram of membrane to cytoplasmic ratio.

As an alternative, NMuMG cells transduced with shLuc or shPAR3 were grown
on 150 cm2 culture plates in the presence of Casp3 inhibitor Ac-DEVD-CHO
(50 mM). To extract PIP3, the medium was removed from cells by gentle aspiration
followed by immediately adding 10ml of ice-cold 0.5M trichloroacetic acid (TCA).
Cells were collected by scraping followed by centrifugation at 300 g for 5min.
Pellets were washed with 3ml of 5% TCA/1mM EDTA. Neutral lipids were
extracted by adding 3ml of methanol:CHCl3 (2:1), vortexing 3� over 10min at
room temp followed by centrifugation at 300 g for 5min. Next, 2.25ml of
Methanol: CHCl3: 12M HCl (80:40:1) was added to the pellet and vortexed 4�
over 15min at room temp. Supernatant was collected by centrifugation at 300 g,
followed by treatments with 0.75ml of CHCl3 and 1.35ml of 0.1M HCl, vortexed
and centrifuged at 300 g for 5min to separate organic and aqueous phases. Lipid
from the lower organic phase was collected, vacuum dried and used for subsequent
ELISA assay to assess total cellular PIP3 levels using PIP3 Mass ELISA kit (Echelon)
according to manufacturer’s protocol.

In vitro protein expression. To express recombinant PAR3 fragments in vitro, the
desired coding sequences were cloned into the pGEX-4 T vector downstream of
GST. Proteins were expressed in BL21 (DE3) competent E. coli by induction with
isopropyl 1-thio-b-D-galactopyranoside (500 mM; Sigma) in a shaker at room temp
(240 r.p.m.) overnight. The bacterial pellet was lysed by sonication in PBS sup-
plemented with 1mM phenylmethylsulfonyl fluoride. GST-tagged proteins were
purified using Glutathione-Sepharose 4B (GE Healthcare) resins at room temp for
1 h with end over end mixing. The bound proteins were washed 3� with PBS and
kept on beads for further protein binding experiments or eluted with 10mM
reduced glutathione/50mM Tris-HCL pH 8.0 buffer for lipid-binding experiments.
Eluted proteins were concentrated and buffer exchanged into PBS using an Amicon
Ultra-0.5 Centrifugal Filter unit with membrane nominal molecular weight limit
(NMWL) of 10 kDa (EMD Millipore).

Lipid-binding assay. Lipid–protein interaction experiments using PIP Strips
(Echelon Biosciences) according to the manufacturer’s protocol. Purified GST
protein and PtdIns(4,5)P2 Grip (PLC-d1-PH) (Echelon Biosciences) were used as
negative and positive controls respectively. All protein–lipid-binding experiments
were carried out with 0.5 mgml� 1 of proteins in PBS-T with 3% BSA. Protein
binding to lipids was assessed by immunoblotting using mouse-anti-GST2
antibody.

For liposome preparations, lipids as indicated were dried on the bottom of glass
tubes and hydrated in 20mM Hepes pH 7.4 to yield 1mgml� 1 samples. Hydrated
lipids were vortexed followed by 10 freeze-thaw cycles and sonication in a water
sonicator bath for 1min to form small unilamellar vesicles. 100 ml of 1mgml� 1

liposome sample was mixed with recombinant GST-Par3(967–1045) protein
(B30 nM) in a polycarbonate ultracentrifuge tube (Beckman Coulter Inc.) and
spun at 150,000 g in a TLA-100 rotor using a TL-100 micro-ultracentrifuge
(Beckman Coulter Inc.). The pelleted and supernatant fractions were then run on
SDS–polyacrylamide gel electrophoresis and assessed by either Coomassie staining
or western blot analysis.

GUV were electroformed on Indium-Tin-Oxide-coated (ITO) glass coverslips
(Sigma Aldrich). Lipid mixture (20ul; 10mgml� 1) containing DOPC (69mol%),
DOPE (13.5mol%), PIP2 (1.5mol%) PA-NBD (0.5mol%) and cholesterol
(15.5mol%) was dried on each side of the ITO slide under a stream of nitrogen
followed by vacuuming in the dark to preserve nitrobenzoxadiazole (NBD)
fluorescence. Upon drying the slides were sandwiched with a silicon spacer in
between (Electron Microscopy Sciences) with 550 ul of GUV formation buffer
(20mM HEPES pH 7.4, 500mM Sucrose). The conductive surface of the ITO
slides was attached to conductive copper tapes and connected to a function
generator (PI-9587C; PASCO Scientific) to create a 2.5–5V of sinusoidal waveform
at 10Hz, which was monitored using an oscilloscope (2120B; BK Precision). Upon
forming the vesicles over 10–12 h, vesicles were mixed with either purified
GST-mApple or GST-mApple-Par3(967–1045) (B150 nM) for 20–30min and
protein–lipid binding observed with a CFI Plan Fluor 40� /1.30 oil immersion lens
using a Nikon A1Rþ confocal system (Nikon Instruments Inc).

Western blots and protein interaction experiments. To detect cleaved Casp3 or
other related signalling events cells both attached and floating were collected and
lysed in 2� Laemmli buffer containing b-mercaptoethanol (Sigma-Aldrich),
resolved by SDS–polyacrylamide gel electrophoresis, and transferred onto nitro-
cellulose (Perkin Elmer) or polyvinylidene difluoride (EMD Millipore) membranes
for western blot analysis. All of the original uncropped western blots for the data in
this paper are provided in Supplementary Fig. 8.

For immunoprecipitation experiments, cells were lysed in buffer containing
0.1% Triton-X100, 20mM HEPES (pH 7.4), 50mM NaCl, 2mM EDTA
supplemented with protease inhibitors cocktail (Roche) and phosphatase inhibitors
(Roche). Insoluble materials from the lysates were removed by centrifugation at
16,100 g for 10min and co-immunoprecipitations of protein complexes were
carried out by incubating the lysates with mouse anti-Sec8, rabbit anti-Par3 or
mouse anti-MYC antibodies for 2–3 h together with GammaBind Plus Sepharose
(GE Healthcare) beads. All protein quantifications were done using Pierce BCA
protein assay kit (Thermo Scientific).
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In vitro, binding experiments were done with recombinant GST-PAR3(967-
1089) fragments. HEK293T cells were lysed in buffer containing 1% CHAPS,
20mM HEPES, 50mM NaCl, 2mM EDTA, supplemented with protease or
phosphatase inhibitors. All binding experiments were done at 4 �C with end-over
mixing for 2 h followed by washing in 1% CHAPS lysis buffer. To block the
amine group of lysine within Par3b 967-1089 we used citraconic modification of
GST-PAR3(967-1089) in an overnight reaction of protein immobilized on
Glutathione beads with the citraconic anhydride in 0.1M sodium carbonate buffer,
pH 8 (Thermo Scientific). Protein binding to glutathione beads was not affected by
citraconic anhydride treatment. Amine blocking was verified using a fluorimetric
assay with O-Phthaldialdehyde (Sigma-Aldrich)70. Lipids from cells and bacterial
lysates were removed using CleanasciteTM Lipid Removal Reagent and
Clarification (Biotech Support Group LLC).

Immunofluorescence and image acquisition. Cells grown on LabTek II chamber
slides (Thermo Scientific), or on No. 1.5 coverglass (Thermo Fisher Scientific) were
fixed with 4% paraformaldehyde-PBS, pH 7.4 or in Methanol at � 20 �C for
15min. When fixed in paraformaldehyde, cells were permeabilized with 0.5%
Triton X-100. Fixed cells were treated with 1� Western Blocking Reagent (Roche
Life Sciences) before incubation at 4 �C with the indicated antibodies diluted in
Western Blocking Reagent. Secondary labelling was performed using AlexaFluor
(Life Technologies) labelled secondary antibodies as indicated. Coverslips were
mounted on slides using Fluoromount G (Electron Microscopy Sciences) or Pro-
Long Gold antifade mountant (ThermoFisher Scientific).

Laser scanning confocal images were acquired using a Plan-Apochromat
63� /1.4 NA oil immersion objective on a Zeiss LSM710 META inverted confocal
microscope (Carl Zeiss Microscopy), HCX PL APO 63� /1.4 oil immersion
objective on a Leica SP5 confocal microscope (Leica Microsystems) or CFI Apo
Lamda S LWD 40X/1.15 water immersion lens, CFI Apo VC 100� /1.40, or CFI
Apo TIRF 60� /1.49 oil immersion objective using a Nikon A1Rþ confocal
system (Nikon Instruments Inc). Epifluorescence images were acquired using a
Nikon Plan 40� /0.65 objective using a Nikon Eclipse Ti microscope equipped
with Andor Neo sCMOS camera and operated by NIS-Elements Advanced
Research imaging software. DIC and phase contrast images were taken using either
a Nikon Eclipse Ti or EVOS FL (Life Technologies) inverted microscopes
respectively.

VSVG-GFP trafficking experiments were performed in live cells at 40 �C or
32 �C as described previously38. Confocal live cell imaging was performed on a
Nikon A1Rþ microscope using a CFI Apo Lambda S 40� /1.15 water immersion
objective mounted on a Nikon Eclipse Ti microscope stand. For live imaging cells
were treated with Prolong Live Antifade (Life Technologies) in phenol-free
FluoroBrite DMEM (ThermoFisher Scientific) culture medium to reduce
photobleaching and background fluorescence.

Uncompressed images were minimally processed or cropped using ImageJ
software (ver 2.0.0-rc-43 for Mac) (National Institutes of Health), or NIS-Elements
Advanced Research (Nikon Instruments Inc). To assess membrane cytoplasmic
protein localizations ROIs were drawn on the entire cytoplasmic compartment or
on membrane regions and pixel intensities were measured using ImageJ/FIJI.
To assess co-localization, ROIs were drawn in cells and Pearson correlation
measured using the co-localization threshold function of ImageJ/FIJI. The Pearson
correlation coefficient of co-localization is given as rc values embedded in the
regression graphs.

Statistical analysis. Data are generally reported as±s.e.m. or±s.d. and analysed
by Student’s t-test, or one-way analysis of variance as indicated using Graphpad
Prism 6 software. When using analysis of variance, post hoc analysis was done using
Kruskal–Wallis, Tukey or Dunnett multiple comparison tests. All statistical ana-
lysis was considered significant at Po0.05.

Data availability. All data that support the findings of this study are available
within the article and its Supplementary Information, or from the authors upon
reasonable request.
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