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Multivoxel neurofeedback selectively modulates
confidence without changing perceptual
performance
Aurelio Cortese1,2,3,4,*, Kaoru Amano3,*, Ai Koizumi1,3,*, Mitsuo Kawato1,2 & Hakwan Lau4,5

A central controversy in metacognition studies concerns whether subjective confidence

directly reflects the reliability of perceptual or cognitive processes, as suggested by normative

models based on the assumption that neural computations are generally optimal. This view

enjoys popularity in the computational and animal literatures, but it has also been suggested

that confidence may depend on a late-stage estimation dissociable from perceptual

processes. Yet, at least in humans, experimental tools have lacked the power to resolve these

issues convincingly. Here, we overcome this difficulty by using the recently developed method

of decoded neurofeedback (DecNef) to systematically manipulate multivoxel correlates of

confidence in a frontoparietal network. Here we report that bi-directional changes in

confidence do not affect perceptual accuracy. Further psychophysical analyses rule out

accounts based on simple shifts in reporting strategy. Our results provide clear

neuroscientific evidence for the systematic dissociation between confidence and perceptual

performance, and thereby challenge current theoretical thinking.
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C
onfidence, the degree of certainty about our own
perceptual decisions, is often considered to reflect the
intriguing abilities of metacognition and introspection1,2,

which have been argued to be uniquely human3–5. In recent years
there has been a surge of interest in how neural circuits compute
confidence. Various studies, in both humans and animals, have
linked specific brain mechanisms to the generation of confidence
judgements6–11 (for review, see Kepecs and Mainen1). Although
in everyday decisions, confidence often poorly reflects decision
accuracy12,13, based on the results of laboratory behavioural
studies many authors argue that confidence computation may
be statistically optimal, such that confidence is directly related
to the strength of the internal perceptual signal (normative
views)6,7,11,14. Congruent with this view, researchers have also
reported common neural substrates for both confidence and
perceptual decisions in area LIP of macaque monkeys7,14.

The human neuroscience literature offers a relatively mixed
view. Although some studies also adopt a normative approach
and define confidence in close association with the strength
of the internal perceptual signal11, several studies suggest that
confidence and perceptual performance can be dissociated9,15–19.
For example, applying transcranial magnetic stimulation (TMS)
to the prefrontal cortex (PFC) resulted in a change in confidence
reports without changing task performance9. In rodents,
inactivation of the orbitofrontal cortex also impaired confidence
judgements20.

A recurrent issue in unequivocally arbitrating between these
opposing views stems from experimental limitations. Confidence
and perceptual performance tend to be highly correlated, so if a
neural signature tracks perceptual decision accuracy, then it is not
surprising that it should also reflect confidence, regardless of
whether it is actually associated with the computation of
confidence per se. Therefore, direct experimental manipulations
for dissociating confidence from perceptual performance seem
necessary20. However, at least in humans, such tools often lack
precision. For instance, the aforementioned study with TMS to
PFC only ‘degraded’ confidence ratings, with the ratings being
less predictive of accuracy9. Arguably, such manipulations might
have only added noise to the mechanism for the ‘readout’ of
confidence, rather than changing the representation of confidence
itself21 (Fig. 1). Another recent study using TMS has found the
opposite effect, namely that stimulation to the polar region can
make confidence more predictive of accuracy22, suggesting these
effects are probably complex and not necessarily specific in
direction.

Here we hypothesize that confidence is generated downstream
from the processing of internal signals and perceptual decisions,
and that the two processes rely on different neuronal
mechanisms. As such, a systematic manipulation of confidence
in precise directions (up or down) should happen independently
from perceptual performance. Ideally, the change in confidence
should be achieved through direct manipulation of specific
brain activity patterns within prescribed regions that are
independently known to reflect confidence in the same
participants (see Fig. 1).

Multivoxel pattern neurofeedback, or decoded neurofeedback
(DecNef), enables us to probe precisely this possibility by having
participants induce brain activation patterns corresponding to a
given mental state or cognitive function in specific regions23–26.
DecNef therefore overcomes previously unresolved experimental
difficulties; unlike ordinary real-time fMRI neurofeedback, which
lets participants consciously self-manipulate the univariate
activity level27,28, in DecNef, multivoxel patterns of activation
representing specific brain states are fed back to participants.
It has been demonstrated that such reinforcement learning
or neural operant conditioning of multivoxel patterns can

unconsciously induce perceptual learning without stimulus
presentation23, or be used to change emotional states24.

Before using DecNef, we first applied ordinary multivoxel
pattern analysis (MVPA) to blood-oxygen-level-dependent
(BOLD) fMRI data to examine the relationship between
confidence and internal perceptual signal, as well as the nature
of brain activation patterns related to confidence. We found
correlates of confidence that seem to be independent from
perceptual responses. With neurofeedback, we were then able to
manipulate confidence in the expected directions (up and down),
without changing perceptual performance and without
the participants’ awareness of the content or purpose of the
manipulation. Three converging lines of evidence confirm the
bi-directionality of the effects: summary statistics (individual real
and expected confidence changes), standardization of DecNef
effects in the second week (correction by the ratio of week-2/
week-1 effects), and mathematical modelling. Moreover, our
results show that this change in confidence is unlikely to be the
product of a nonspecific change in response strategy, such as a
mere shift in response criterion. Thus, our results provide strong
evidence for the distinct computations underlying confidence and
perceptual decision making, and thereby cast doubt on currently
dominant views concerning confidence and metacognition.

Results
Behavioural task for MVPA data acquisition. The entire
experiment consisted of six neuroimaging sessions (on separate
days): retinotopy, an MVPA session and four sessions (that is,
days) of DecNef (Fig. 2a). For the MVPA session, the participants
performed a two-choice dot-motion discrimination task with
confidence rating while in the scanner (see Fig. 2b, and ‘Methods’
section).

During the MVPA session, the average accuracy for motion
discrimination (76.6%±1.5% s.e.m.) was similar to the targeted
performance level (t-test against the targeted level of 75%,
t16¼ 1.475, P¼ 0.16, Fig. 2c). Confidence on correct trials was
rated higher compared with incorrect trials (paired t-test,
t16¼ 7.664, Po10� 6), in accordance with previous studies1,21

(Fig. 2d).

MVP analyses. We first looked into how the three main
behavioural variables, confidence (high versus low), accuracy
(correct versus incorrect) and perceived motion direction
(the perceptual responses, left versus right) mapped onto brain
activation patterns across regions of interest (ROIs). Since
confidence ratings were given on a four-point scale and the
analysis performed was a binary classification, these ratings
were collapsed into two classes. Thus, high and low confidence
generally corresponded to ratings 3, 4 and 1, 2, respectively
(see the ‘Methods’ section).

Specifically, we were interested in the primary visual cortex
(V1/V2), motion-sensitivity areas (V3A and hMT), a key region
of the ventral pathway (fusiform gyrus—FFG), and higher order
processing areas previously shown to be critical in the formation
of confidence judgments—inferior parietal lobule (IPL)7,29, and
lateral prefrontal cortex (lateral PFC)8,9,18,30. Mean decoding
accuracies were averaged across all the 17 participants. Statistical
analyses were performed with two-tailed t-tests against a
chance accuracy of 50%. For multiple comparisons, we used the
Holm–Bonferroni procedure (see the ‘Methods’ section), and we
report corrected P values.

MVPA for correct versus incorrect trials yielded statistically
significant classification accuracies in all ROIs (Fig. 3a,
Supplementary Table 1). This means that task accuracy can be
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Figure 1 | Conceptual illustration of the putative generation of confidence in the brain. Given a certain visual stimulus as input to the system, the brain

makes perceptual decisions with a corresponding level of internal perceptual evidence and noise. (a) Highlights the view that confidence is computed by

the same neural substrates encoding perceptual evidence, and the two evolve together to give rise to a subjective report. According to this view,

manipulations of confidence should change perceptual performance too. (b) Confidence is generated downstream from the processing of perceptual

evidence, inheriting noise and signal from the earlier stages, but additional noise at this level further modulates confidence. This hierarchical view therefore

considers confidence as a metacognitive process66. We further hypothesize that a previous study of rTMS9 might have mainly affected the self-reporting

mechanism, rather than confidence per se. This is congruent with the result that confidence ratings only became less diagnostic of accuracy, but overall

confidence levels did not change in a specific direction in this previous rTMS study. If a manipulation such as decoded neurofeedback (DecNef) can

specifically affect confidence representations, we should be able to selectively up- and downregulate confidence, without affecting task accuracy.
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Figure 2 | Experimental design and behavioural performance during the MVPA session. (a) The experiment consisted of six neuroimaging sessions.

First, we conducted a retinotopy session to functionally define the brain’s visual areas. Second, we conducted an MVPA session, the data from which were

used to read out the voxel-based activation patterns evoked during discrimination of motion direction with high or low confidence. Last, the multivoxel

activation patterns for high or low confidence were induced in each of two separate DecNef blocks, each comprising two neurofeedback sessions (that is,

2 days), in a counterbalanced order. Each neurofeedback block was preceded by a pre-test and followed by a post-test procedure to measure the

behavioural changes induced by DecNef. (b) The trial sequence of the two-choice discrimination task with a random dot-motion stimulus. Upon stimulus

presentation, the participants were required to indicate the motion direction (leftward or rightward) and to judge confidence (four-point scale) on their

perceptual decision. Importantly, the corresponding buttons were randomized and assigned after stimulus presentation, so the participants could not

prepare for a specific motor response during the delay. The same trial sequence was used in the MVPA session and the pre-/post-tests. (c) Discrimination

accuracy during the MVPA session was at a threshold level of 75% correct, achieved via stimulus titration (see the ‘Methods’ section). (d) Confidence in

the correct and incorrect trials of the MVPA session. The correct trials were rated with higher confidence compared with the incorrect trials. n¼ 17,

***Po10� 5. Centre values correspond to means, and error bars to s.e.m. DecNef, decoded fMRI neurofeedback.
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reflected by the spatial pattern of fMRI activity at different stages
of the visual and cognitive processing hierarchy.

Successful MVPA for confidence (Fig. 3b, Supplementary
Table 2), conversely, was associated mostly with frontoparietal
areas (IPL, and lateral PFC subregions), although hMT
marginally contained fMRI signals that allowed the prediction
of the confidence level.

Perceived motion direction (Fig. 3c, Supplementary Table 3)
could be also discriminated at above chance levels from the voxel
activation patterns in multiple ROIs in the visual processing areas
as well as the parietal region.

One concern is that the successful classification of confidence
may solely reflect the difference in the overall activation level
between the two behavioural conditions (that is, high and low
confidence), rather than fine-grained spatial patterns of activity.
Yet, this was unlikely, as the weights of the sparse logistic
regression (SLR) classifier in each ROI were symmetrically
distributed around zero, having both negative and positive values
(Fig. 3d). If the high decoding accuracy of confidence were
solely due to a general increase or decrease in the BOLD signal,
we would expect the SLR weights to be skewed toward positive or
negative values, respectively. Thus, the confidence MVPA results
reflect true spatial patterns of voxel activations.

Another concern is that high classification accuracy in some
ROIs, for example, for confidence in the frontal areas, may simply

reflect the larger number of voxels relative to other regions.
To control for this confound, we repeated the same MVP analyses
while equating the number of voxels across all ROIs. Voxels were
selected based on their t-value in a univariate general linear model
(GLM) analysis contrasting stimulus presentation versus a blank
baseline. Even after controlling for the voxel number, results
remained qualitatively very similar (Supplementary Fig. 2a–d).

To further address the question of how confidence judgments
may emerge, we looked into the relationship between the internal
sensory signal, and task accuracy or confidence. Previous work
suggests that confidence is a direct transformation of the internal
sensory signal driving perceptual decisions1,6,7,11,14. To examine
this hypothesis, we first trained a classifier to distinguish between
perceived leftward versus rightward motion. We then rectified the
output decision variable of the classifier (that is, the linear
discriminant function, LDF) by taking absolute values, and used
that rectified signal to predict task accuracy. In other words, if the
classifier considers the leftward or rightward motion signal to be
of extreme magnitude, we expect task accuracy to be high, just as
signal detection theory predicts31 (Fig. 4a,b). Indeed, as expected,
a direct classification without rectification resulted in chance
performance of the classifying algorithm (Fig. 4c). However, upon
rectification, the information on the magnitude of the motion
contained in the voxels’ activation values was successfully utilized
by the classifier to discriminate between correct versus incorrect
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Figure 3 | MVPA results. MVPA results reveal that accuracy, confidence and percept can all be decoded in multiple brain regions of interest (ROIs), but

the representations may differ (a–d). Shown here are accuracies (%) in classifying the participants’ responses from their brain activation patterns within

different ROIs. Accuracy in classifying (a) correct versus incorrect trials, (b) high- versus low-confidence trials and (c) perceived motion direction (left

versus right). (d) Pruned weights of the confidence decoder. The SLR algorithm automatically selected relevant voxels that carried information to decode

confidence. The weights were distributed to both the negative and positive sides of the abscissa; thus, the classification of high versus low confidence

depended upon spatial activation patterns, rather than general activation changes; n¼ 17, *Po0.05, **Po0.01, ***Po0.005, ****Po10� 3, *****Po10�4;

P values corrected for multiple comparisons (Holm–Bonferroni). Centre values correspond to means, and error bars to s.e.m. FFG, fusiform gyrus;

IFS, inferior frontal sulcus; IPL, inferior parietal lobule; MFG, middle frontal gyrus; MFS, middle frontal sulcus.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13669

4 NATURE COMMUNICATIONS | 7:13669 | DOI: 10.1038/ncomms13669 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


trials (Fig. 4d, Supplementary Table 4). The distributions of
rectified LDF output values for each ROI, all participants pooled
(Fig. 4e), qualitatively resembled the mean differences between

correct and incorrect trials and were reminiscent of the expected
pattern for a good separability (Fig. 4b-right), constituting the
positive results reported above (Fig. 4d, Supplementary Table 4).
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(absolute value taken where zero was the discrimination criterion for left versus right motion) before assigning labels to each trial. (b) Rationale of the

analysis: before rectification, the output of the LDF does not distinguish between correct and incorrect trials. The distribution of LDF output values for the

incorrect trials is expected to be unimodal and centred at the left–right decision boundary, while the distribution for correct trials is expected to be bimodal,

with peaks distributed on either side of the left–right decision boundary. Importantly, the two distributions should have approximately the same mean.

However, upon rectification, the distribution for correct trials will have a higher mean value and therefore a new boundary can be set to discriminate

between correct versus incorrect trials. (Please see the main text for a more detailed explanation). (c) As expected, before rectification, the decoder for

perceptual responses fails to generalize to the discrimination of correct versus incorrect trials. (d) Following rectification, the information contained in the

voxels’ spatial activation patterns can be used to successfully discriminate between correct versus incorrect trials. (e) Distributions of normalized rectified
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(Holm–Bonferroni). Centre values correspond to means, and error bars to s.e.m. ROI labels as in Fig. 3.
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Again, as expected, direct application of the LDF output values
from the perceived motion-direction classification to decode
confidence resulted in only chance-level performance (Fig. 5a).
However, in sharp contrast to the application of the rectified LDF
values to perceptual accuracy (as shown in Fig. 4), even after
rectification, the LDF values from the perceived motion decoding
still could not predict confidence in any ROI after correction for
multiple comparisons (Fig. 5b). At uncorrected values, hMT
and FFG were slightly significantly different from chance
(Supplementary Table 5; P¼ 0.0393 and P¼ 0.0423, respectively).
Thus, somewhat surprisingly, applying the same transformation of
the LDF trained on the perceived motion direction resulted in much
poorer decoding of confidence than with decoding of perceptual
accuracy. The distributions of rectified LDF output values were
indeed almost identical between high- and low-confidence trials
(Fig. 5c), which explains why it was impossible to achieve above-
chance classification of confidence in most ROIs (Fig. 5b).

Nevertheless, classification is a complicated process and the
above analysis may lack transparency. Therefore, we also adopted
a simpler approach, to graphically assess the relationship between
confidence and the output of the linear classifier obtained from

training on leftward versus rightward motion. If the LDF and
confidence are consistently related, one should see a specific
pattern of association between the two. However, we found that
this was not the case for most ROIs except for V1/V2 (Fig. 6,
Supplementary Figs 3,4), thereby confirming the conclusions of
the previous analyses.

The results from the decoding analyses for sensory signal,
task accuracy and confidence, as well as their relationships,
suggest that confidence may involve a distinct late-stage process
downstream of perceptual decisions. Furthermore, the neural
representation of confidence seems to be independent from task
accuracy and the percept, as demonstrated by the differential
results in MVPA, specifically between confidence and accuracy,
in the output of the rectification analysis. Taken together,
these results set the stage for the use of decoded neurofeedback
to directly test the hypothesis that confidence is generated
downstream of and distinctly from the processes for perceptual
decisions. If the hypothesis reflects the actual confidence
computations in the brain, we should see an effect of DecNef
restricted to the confidence dimension, without introducing any
change in task accuracy (Fig. 1).
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Basic findings from the neurofeedback experiment. After
construction of a decoder for confidence in the MVPA session (that
is, a decoder that can reliably classify high versus low confidence
from brain activation patterns), participants were screened out
either if they could not or declined to come back for the DecNef
sessions, or due to low decoding accuracy for confidence in

frontoparietal ROIs. Ten participants thus proceeded through the
neurofeedback training. The selection was necessary because our
previous studies23,24,26 show that for DecNef to induce significant
multivoxel activation changes, initial decoding accuracy has
to be sufficiently high. In DecNef, multivoxel activation changes
are the experimental independent variables, and if they cannot
be produced, experiments cannot take place. Each participant
participated in four neurofeedback sessions (that is, days),
two consecutive sessions each for high- and low-confidence
inductions, with the order of high- and low-confidence
inductions counterbalanced across participants. Both high-
confidence DecNef sessions and low-confidence DecNef sessions
were preceded and followed by behavioural pre-test and post-test
(Fig. 2a).

For all induction trials in the fMRI scanner, the participants
were instructed to manipulate and change their brain activity to
enlarge the feedback disc presented at the end of each trial as
much as possible. The size of the disk represented the
monetary reward they would receive on each trial (Fig. 7a).
Because dot-motion stimuli were presented during DecNef, we
hypothesized that subsequent presentation of such stimuli in the
post-test may recall the DecNef-induced brain activity patterns
via associative learning26,32. Throughout the experiment, the
participants were naive with regard to the purpose of the
neurofeedback sessions. As in a previous study23, even when
asked in a forced-choice manner which experimental group they
thought they belonged to (whether they first did high-confidence
DecNef or low-confidence DecNef, followed by the other
condition), the participants as a group could answer only at
chance (five correct, four incorrect, one not applicable,
Chi-square test, w2¼ 0.225, P¼ 0.64). Furthermore, participants’
reported strategies revealed an absence of knowledge regarding
the purpose of the inductions in the DecNef sessions
(see Supplementary Table 6).

Figure 7b shows confidence ratings at the four timings
averaged across participants for the two groups (high- then
low-, or low- then high-confidence DecNef). We emphasize
that both groups of participants had almost identical mean
(±s.e.m.) starting confidence levels (Fig. 7b; group D-U,
confidence at t1: �C ¼ 2:011 � 0:132; group U-D, confidence
at t1: �C ¼ 2:006 � 0:130; paired t-test t4¼ 0.023, P¼ 0.98). A
closer examination of individual data reveal that the results at the
group level (Supplementary Fig. 5a) were mirrored at the
individual level (Supplementary Fig. 5b). Moreover, confidence
changes had a clear common trend across participants well
manifested when data were realigned to a common starting point
(Supplementary Fig. 5c). Most importantly, DecNef induced bi-
directional changes in confidence ratings as measured in the post-
tests. That is, the participants were more confident than before in
their perceptual decisions after the high-confidence DecNef
session, and showed decreased confidence following the low-
confidence DecNef session, as evident from Fig. 7b and
Supplementary Fig. 5. Three independent lines of evidence as
detailed below statistically supported this observation.

Neurofeedback induced significant confidence changes.
Qualitatively, order and type of DecNef (high- then low-, or
low- then high-) seemed to have had a large influence on how
confidence was experimentally manipulated (Fig. 7b). Specifically,
data suggest that 7/10 cases in the low-confidence DecNef and
9/10 cases in the high-confidence DecNef showed changes in the
expected directions (Fig. 7c, Supplementary Fig. 7c). Supposing,
as a null hypothesis, that the direction of each confidence change
occurs at random, the associated probability is then 1/2.
Assuming that each DecNef session is independent, the
cumulative binomial probability to obtain 16/20 matches is
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output of the classifier (linear discriminant function, LDF) constructed on

the basis of the perceived direction of motion (leftward, rightward). Larger

magnitude of LDF value represents trials of higher signal strength. For each

ROI, black circles represent binned data points pooled from all the

participants, at each confidence level, respectively. The size of the circles

reflects the number of data points within each bin; each side of the LDF

function was subdivided into 20 bins. Thick lines (dark for negative LDF

values, light for positive LDF values) are linear fits to the LDF against

confidence levels. On the basis of normative optimality models, one would

expect higher absolute LDF magnitude to be associated with higher

confidence ratings, thereby forming a ‘v-shaped’ pattern on these plots.

V1/V2 alone shows a relevant significant correlation between negative LDF

values (leftward motion), and confidence (Pearson’s r, corrected for

multiple comparisons across ROIs). In all other ROIs, there seem to be

negligible meaningful relationship between LDF magnitude and confidence.

*Po0.05 ROI labels as in Fig. 3.
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P(X415)¼ 0.0059. This null hypothesis that after each DecNef
session increase or decrease in confidence occurred at random is
thus statistically implausible. Furthermore, as 16/20 matches were

observed, confidence changed in the expected directions as
designed in the experiment, contrary to the prediction of the null
hypothesis.
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account for the hemodynamic delay. The feedback disc size indicated the amount of monetary reward earned in that trial (max¼ 18.75 yen, approximately

0.15 US dollars in each trial), and was determined by the likelihood of the real-time activation patterns being classified as high or low confidence

(depending on the session), given previous subject-specific MVPA results. (b) Confidence measurements for the two groups across four time points of the

experiments: the pre-, post-tests on week one (1 and 2, respectively), and pre- and post-tests on week 2 (3 and 4, respectively). Thick solid line shows the
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represent s.e.m. (c) Illustration of the binomial probability between the observed and expected directions of confidence changes. Nine out of 10 changes

were in the expected direction for high confidence DecNef, and 7/10 for low confidence DecNef. (d) Bi-directional net effects of high- and low-confidence
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interference of the first week DecNef with the second week effects. The changes were significant in both the directions, demonstrating that confidence was
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Quantitatively, to analyse DecNef effects on confidence, we
utilized a mixed-effects repeated-measures analysis of variance
(ANOVA; with between-subjects factor of group (low–high and
high–low orders) and within-subjects factor of timing (Fig. 7b,
timing 1, 2, 3 and 4)). The ANOVA analysis resulted in a strongly
significant interaction between factors group and timing,
F3,24¼ 8.650, Po0.001 (univariate effect). Main effects of
factors timing, F3,24¼ 2.555, P¼ 0.079, and group, F1,8¼ 3.674,
P¼ 0.092, were close to significance.

From Fig. 7b, as a qualitative assessment of DecNef effects on
confidence, it is apparent that high-confidence DecNef had a
larger influence than low-confidence DecNef, and the changes in
confidence induced by DecNef were larger in the first week than
those in the second week irrespective of high- or low-confidence
DecNef. In addition, once a new confidence level had been
acquired, it was seemingly maintained to some extent over the
weeklong interval; this in turn strongly interacted with any
subsequent DecNef training (see Supplementary Fig. 5). By
simply utilizing the ratios of the confidence changes between
different time points and directions, we can quantify these main
consequences of bi-directional DecNef. The derived parameters
were the initial (first week) mean absolute change in confidence
by high-confidence DecNef (DB0.396), the smaller and with
opposite sign low-confidence DecNef effect (eB� 0.400), the
preservation of changes between DecNef sessions across the
weeklong interval (aB0.997), and the reduced second-week effect
(gB0.390) (Fig. 7b, right side).

Owing to the weaker DecNef effects in the second week and
group orders, the true DecNef effects would be partly masked if
we had simply averaged the first-week and second-week effects
(raw confidence changes for high- and low-confidence DecNef,
Supplementary Fig. 6a). To avoid this masking, the ratio of the
second-week DecNef with the first-week effect (g) is taken into
account, and we multiplied the second-week individual con-
fidence changes by 1/g. The true DecNef effects transformed as
the first-week effects can then be computed as averages from all
10 DecNef sessions for both high and low confidence. The
resulting changes in confidence by high- and low-confidence
DecNef were both significantly different from zero, and this
provided the second piece of evidence for the bi-directionality
of DecNef effects (Fig. 7d; one-sided t-test: increase for
high-confidence DecNef, t9¼ 4.39, P¼ 0.0009; decrease for
low-confidence DecNef, t9¼ � 1.88, P¼ 0.0467; high—higher
than low-confidence DecNef, t9¼ 4.314, P¼ 0.001). Critically,
although the raw confidence values (Supplementary Fig. 6) show
the same trend, the corrected values, after taking into account
session, time and learning effects, show a clearer pattern.

Finally, for a thorough analysis of these effects, we applied
nonlinear modelling to formally decompose and characterize the
main behavioural consequences of DecNef, accounting for both
high- and low-confidence neurofeedback, as initially explored
above and illustrated in Fig. 7b. Specifically, we fitted a system of
nonlinear parametric equations with four global parameters D, e, a,
g; same as in Fig. 7b. Additional models are described
in Supplementary Fig. 7a, Supplementary Table 7 and
Supplementary Note 1. To compare the models, we used the
corrected Akaike Information Criterion (AICc, see the ‘Methods’
section)33,34. Model parameters were estimated under least square
minimization and through model averaging, given model selection
uncertainty with three models having DAICco2 (ref. 34)
(Supplementary Fig. 7a,b, Supplementary Table 7). The three
best models possessed non-zero and negative e, thus the nonlinear
modelling results clearly demonstrated that not only high-
confidence DecNef but also low-confidence DecNef induced
confidence change in the expected directions. Consequently,
AICc further supported the bi-directionality of DecNef effects

(Supplementary Fig. 7a,b). The estimated delta parameter (D) was
0.37; thus high-confidence DecNef on the first week increased
confidence by 0.37, about 20% change in confidence. Alpha (a) was
0.83; hence on average only 17% of the first week effect was lost
during the one-week interval owing to memory decay. Epsilon (e)
was � 0.35, thus the low-confidence DecNef effect was opposite in
its sign and 35% of the magnitude of that of the high-confidence
DecNef. Gamma (g) was 0.19, and thus the second week effect was
only 19% of that of the first week (Supplementary Fig. 7b). Overall,
supporting the validity of the estimated model parameters, a
simple correlation analysis between observed confidence changes
and estimated changes computed with the mathematical model
equations, yielded a highly significant correlation (n¼ 20,
Pearson’s r¼ 0.748, Po10� 5, Supplementary Fig. 7c).

The specificity of neurofeedback effects on confidence. Similar
to the analysis of Fig. 7d, to corroborate the previous result using
the g-ratio to account for the second-week weaker effect of DecNef
and identify the mean true effect, individual mean confidence
change values in the second week were multiplied by 1/g (g
parameter obtained through model averaging). Significant effects
for the two DecNef trainings were confirmed (one-sided t-test,
t9¼ 3.64; P¼ 0.0027, t9¼ � 1.92, P¼ 0.0436, for high- and
low-confidence DecNef, respectively; t9¼ 3.486, P¼ 0.0034, for
high- versus low-confidence DecNef; Supplementary Fig. 7d).
This result, together with the negative and non-zero value of the
estimated e parameter provided the third line of evidence for
the bi-directionality of DecNef-induced confidence changes. Fur-
thermore, it emerges that a more sophisticated method used to
evaluate net confidence changes resulted in larger DecNef effects
being detected. Indeed, by comparing Fig. 7d and Supplementary
Figs 6 and 7, this qualitative trend can be directly appreciated,
supporting the modelling results. Therefore, although the effects of
DecNef were complex, as they interact with session order and time,
there is strong evidence to support that it significantly modulated
confidence in both the positive and negative directions.

Critically, task accuracy in the two-choice discrimination
task did not change between the pre- and post-tests; this rules
out that confidence changes were simply due to a change
in discrimination accuracy, which would have trivialized our
finding as confidence and accuracy are typically confounded21,35.
A two-way repeated-measures ANOVA (factors of neurofeedback
and time) showed nonsignificant interaction (F1,9¼ 0.030,
P¼ 0.867) and non-significant main effects of time (F1,9¼ 0,
P¼ 0.994) and neurofeedback (F1,9¼ 1.854, P¼ 0.206; Fig. 8a).

Interestingly, the effect of DecNef on confidence was more
robust for incorrect than correct trials (Fig. 8b,c, data reported
were corrected for the second-week effect with the g-parameter
as in the previous results for general confidence changes.
Uncorrected data are reported in Supplementary Fig. 6). The
true change in confidence for incorrect trials in high-confidence
DecNef was significantly different from 0 (one-sided t-test for
increase, t9¼ 3.349, P¼ 0.0043, Fig. 8b), and it was close to
significance in low-confidence DecNef (one-sided t-test for
decrease, t9¼ � 1.328, P¼ 0.108, Fig. 8b). The changes were
not significant for correct trials in both DecNef type of training
(Fig. 8b). A three-way repeated-measures ANOVA (factors of
response accuracy (correct versus incorrect), neurofeedback
(high- versus low-confidence DecNef) and time (pre- versus
post-test), see Fig. 8c) resulted in a close-to-significance three-way
interaction (F1,9¼ 4.166, P¼ 0.072), indicating that confidence
seemed to change asymmetrically for correct and incorrect
responses. This was supported by the significant main effect of
response accuracy (F1,9¼ 23.945, P¼ 0.001). Main effect of time
was also significant (F1,9¼ 7.419, P¼ 0.023). The interactions
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between response accuracy and neurofeedback (F1,9¼ 1.391,
P¼ 0.269) as well as between response accuracy and time
(F1,9¼ 0.445, P¼ 0.521) were not significant. Reflecting the result
of the mixed ANOVA reported for Fig. 7b, the interaction
between neurofeedback and response accuracy was also sig-
nificant (F1,9¼ 12.539, P¼ 0.006). Reflecting these outcomes, the
fractions of single confidence levels in correct and incorrect trials
were not equally affected by DecNef (Supplementary Fig. 8a,b).
A possible interpretation is that confidence associated with
incorrect responses is more malleable, owing to a weaker and
noisier perceptual signal.

The result that DecNef influenced confidence more markedly
in incorrect trials seems to suggest that the effect was more
complex than a mere change in responding criterion or strategy;
if participants generally tended to report higher confidence after
high-confidence DecNef, this should be reflected as a more
uniform effect in both correct and incorrect trials. However, one
may also worry that small changes in confidence on correct trials
may be due to a ceiling or floor effect. To formally test whether
the effect of DecNef can be instead explained in terms of a
criterion shift in signal detection theoretic (SDT) terms31, we
performed a formal type-2 analysis35. Using the raw confidence
ratings in both correct and incorrect trials, we computed meta-d0

(ref. 36), a type-2 SDT measure of metacognitive sensitivity that

represents how well confidence reflected accuracy over trials.
Given that meta-d0 measures are by nature independent of
criterion changes (both type-1 and type-2 (ref. 36)), a mere
change in criterion should leave meta-d’ constant. We found that
meta-d0 decreased following high-confidence DecNef (Fig. 8d).
Such a change was not seen following low-confidence DecNef,
and a two-way ANOVA with repeated measures (factors of
neurofeedback and time) showed no significant interaction
(F1,9¼ 2.822, P¼ 0.127), albeit the factor time was close to
significance (F1,9¼ 3.325, P¼ 0.102), while neurofeedback
(F1,9¼ 0.002, P¼ 0.968) was not significant. Post hoc two-tailed
paired t-tests to contrast pre- and post-tests displayed a
significant effect of high-confidence DecNef (t9¼ 2.912,
P¼ 0.0173), while not for low-confidence DecNef (t9¼ 0.026,
P¼ 0.980) on meta-d0. These results suggest that at least for high-
confidence DecNef, the behavioural effect cannot be accounted
for by a simple change in criterion according to a signal detection
theoretic model; the effect was specific for incorrect trials.

The mechanisms and factors leading to neurofeedback success.
To verify that DecNef really had a causal role in inducing
the subsequent behavioural changes, we looked into how well
performance in neurofeedback training (that is, likelihood of
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emerges from these data, indicating that the effect had opposite effects in high- and low-confidence DecNef, and that it was larger for incorrect trials.

(c) Asymmetrical changes in confidence for correct and incorrect trials, in high- and low-confidence DecNef, plotted with respect to pre- and post-test

measures. A three-way ANOVA (factors of response type, neurofeedback and time) with repeated measures showed a close-to-significance three-way

interaction, a significant interaction between neurofeedback and time, and a significant main effect of response accuracy. As in the previous panel, the data

plotted take into account the order and interference of DecNef sessions and integrate the estimated gamma parameter. (d) Meta-d0 was significantly

reduced following high-confidence DecNef, indicating that a mere change in criterion cannot account for the results reported in b,c and Fig. 7d; see main

text for explanation. Two-way ANOVA with repeated measures showed no significant interaction, but the main effect of time was close to significance;

n¼ 10, þP¼0.108, *Po0.05, ***Po0.005. Centre values correspond to means, and error bars to s.e.m.
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successful induction of the targeted brain activity patterns) cor-
related with changes in confidence. Because there were in total
four DecNef sessions, given that each of high- and low-confidence
DecNef consisted of two neurofeedback sessions, we looked
separately at the effect of induction success for the first and
second day of DecNef for each condition. We found that
induction success on the second day of the neurofeedback
training for each DecNef condition (high and low confidence),
that is, the session immediately preceding post-test, strongly
correlated with the change in confidence (Fig. 9a, black line,
n¼ 20, Pearson’s r¼ 0.680, P¼ 0.00096; where n indicates the
total number of DecNef conditions tested, that is, 10 participants
at two conditions each, high- and low-confidence DecNef).
Specifically, this effect was mainly driven by the high-confidence
DecNef condition (Fig. 9a, dark grey line, n¼ 10, Pearson’s
r¼ 0.703, P¼ 0.023); the correlation was not statistically
significant for low-confidence DecNef alone (Fig. 9a, light grey
line, n¼ 10, Pearson’s r¼ 0.083, P¼ 0.820).

We also analysed the relationship between change in confidence
and induction success in the first day of DecNef in each condition
(high and low confidence), and found weaker correlations (see the
‘Methods’ section, and Supplementary Fig. 9). Given that induction
success was slightly higher in the second day for all conditions
averaged (Supplementary Fig. 10a), these results are perhaps
unsurprising because post-test followed immediately the second
day rather than the first day of DecNef in each condition.
Furthermore, precluding the possibility that the influence of
neurofeedback training on confidence may have simply reflected
the positive effect associated with monetary reward and/or correct
performance, the total amounts of monetary reward for high-

confidence and low-confidence induction were not statistically
different (2-days average (±s.d.) monetary reward for low
confidence: 1,550±161 JPY, for high confidence: 1,470±258
JPY; paired t-test statistics: t9¼ 0.797, P¼ 0.45).

Considering that we simultaneously used MVPA patterns in as
many as four frontoparietal ROIs in the neurofeedback sessions,
the question arises as to whether some of them were more critical
than others in changing confidence behaviourally. We explored
the contribution of frontal versus parietal areas based on
participants’ relative success in the neurofeedback training in
the different ROIs used (Fig. 9b). We found that for seven
participants, DecNef induction success was highest in the parietal
ROI, whereas for three participants, it was highest in the
frontal ROIs. Interestingly, the effect size—mean net confidence
changes—in each group were also very similar (paired t-test
t8¼ � 0.433, P¼ 0.676, IPL one-sample t-test against no change,
t6¼ 3.46, P¼ 0.0134, LPFC one-sample t-test against no change,
t2¼ 2.34, P¼ 0.145). Although these results are exploratory as
they are limited by a small number of participants, they suggest
that both parietal and prefrontal regions are of similar
importance for the induced confidence changes in this study.
We also analysed frontal ROIs separately (Supplementary
Fig. 10b,c).

Finally, we addressed the question of whether DecNef
induction may have led to behavioural changes via activity in
brain areas other than the targeted regions. We conducted
an ‘information communication criterion’ analysis (see the
‘Methods’ section and a previous study23). Conceptually, the
analysis concerns how induction success in a particular ROI
within the frontoparietal network may be predicted by, or
associated with, multivoxel patterns in other ROIs. For instance,
when participants activate a pattern of brain activity reflecting
high confidence in a prefrontal region, in principle it is possible
that it is accompanied by a pattern in V1/V2 also reflecting high
confidence, and one could argue that the latter may be the
ultimate cause of the behavioural change. The ‘coefficient of
determination’ measure reported in Fig. 10 indicates the strength
of such possible associations with a scale representing
predictability. For all ROIs, as expected, the coefficient of the
source ROI itself was always high (470%, IPL Fig. 10a, inferior
frontal sulcus (IFS; Fig. 10b), middle frontal sulcus (MFS;
Fig. 10c), middle frontal gyrus (MFG; Fig. 10d)) and acted as a
control. Importantly, the coefficient was low for ROIs that were
not used in the neurofeedback paradigm (visual areas), as
compared with the coefficients associated with ROIs that were
concurrently used for induction. The same analysis was repeated
with the averaged neurofeedback signal, that is, the overall
likelihood fed back to participants on a trial-by-trial basis
(Supplementary Fig. 11a). These results indicate that induction
success was largely local for each ROI, and specifically undermine
the possibility that DecNef changed confidence by influencing
earlier visual areas.

Moreover, as univariate activations in the target frontoparietal
regions where not found when participants successfully induced
the target activation patterns, the latter alone caused confidence
changes (Supplementary Fig. 11b–e).

Discussion
In summary, using MVPA, correlates of confidence were found
in frontoparietal areas; the patterns of classification differed
for confidence, task accuracy and perceptual responses.
Importantly, the mere induction of activation patterns in the
same frontoparietal regions, via bi-directional neurofeedback,
resulted in the corresponding bi-directional confidence changes.
The bi-directional nature of the confidence changes was
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supported by three converging lines of evidence: (1) the binomial
probability of observed versus expected changes at the individual
level; (2) standardization of the second week effect by the ratio of
week-2/week-1 effects; (3) the modelling analyses provided a
formal framework, specifically through the sign and magnitude of
the estimated parameters. It is notable that neurofeedback did not
affect perceptual accuracy in the discrimination task, as this rules
out the possibility that these representations of confidence may
just reflect the strength of the internal perceptual signal. In
addition, our psychophysical analyses indicate that the change in
confidence due to DecNef was unlikely to be due to a change
in response criterion.

Besides informing us about the nature of confidence, these
results may also be relevant to the mechanisms of conscious
perception2,37. Specifically, in the remarkable neurological
condition of blindsight, patients with lesions to their primary
visual cortex (V1) show residual visual capacity in their
forced-choice responses in the absence of reported conscious
awareness38,39. Importantly, in such cases, the patients also claim
to be ‘just guessing’ when they make correct perceptual decisions.
Therefore, congruent with our results, the existence of such
patients suggests that confidence may be dissociable from
perceptual decisions, and that confidence and awareness may be
conceptually linked2,40. Compatible with this interpretation,
several theories also suggest that the PFC (and to some
extent also the parietal cortex) plays a central role in visual
awareness37,41,42.

Our MVPA results indicate that the correlates of confidence
can be found in different frontal and parietal regions, and,
importantly, that such correlates are multivariate patterns
rather than overall activation levels. Furthermore, during

neurofeedback, when activation patterns were successfully
induced, we did not find univariate activations in the target
frontoparietal regions. This may seem incongruent with previous
studies reporting univariate activations in prefrontal cortex
associated with confidence11,18,43. One important difference is
that in most of these previous studies, confidence responses had
fixed associations with specific button presses. Thus, we cannot
completely rule out the possibility that activations associated with
high or low confidence may have simply reflected motor
preparation in previous studies. In contrast, the MVPA in our
study was derived from BOLD signal decoupled from the motor
preparation, because the mapping changed from trial to trial and
were only presented 4 s after stimulus offset.

In addition, contra the general view and a recent review claiming
that perceptual content cannot be decoded in the PFC44, here we
have achieved classification of perceptual states from multivoxel
activation patterns in PFC and parietal lobule. Indeed,
electrophysiology data support the view that subregions
of the PFC can represent both task-general and feature-specific
perceptual content, even when the relevant stimuli or features were
not attended to45,46. Although relatively rare, some fMRI studies
that used multivariate decoding approaches have shown that visual
information can be retrieved from frontoparietal areas47,48. The
positive findings reported here are thus in line with these studies.
In particular, several aspects in our methods may help explain why
we succeeded in decoding perceptual content. First, we used an
ROI-based approach (rather than a searchlight approach, which in
some circumstances can be inefficient), and then utilized SLR as
classification algorithm, a special case of logistic regression adapted
to data sets where information is sparsely represented in the
multidimensional feature space. To reduce the dimensionality of
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Figure 10 | Information communication criterion analysis. The information communication criterion analysis shows that induction of high- and

low-confidence activation patterns in frontoparietal areas did not result from activation patterns in visual areas. The mean (±s.e.m.) coefficient of

determination—goodness of fits between the likelihood in (a) IPL, (b) IFS, (c) MFS, (d) MFG and the predicted value for each area—multiplied by

100 for the sparse linear regression prediction by each of the activation patterns in V1/V2, V3A, hMT, FFG, IPL, IFS, MFS and MFG during DecNef, and

from the IPL, IFS, MFS and MFG themselves as a control. The coefficient of determination is akin to variance-accounted-for (VAF). Centre values

correspond to means, and error bars to s.e.m. FFG, fusiform gyrus; IFS, inferior frontal sulcus; IPL, inferior parietal lobule; MFG, middle frontal gyrus; MFS,

middle frontal sulcus.
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the feature space, SLR is grounded on the assumption that only a
small part of the feature is relevant to the classification problem
being explored. On the other hand, support vector machines
(SVMs) use kernels and therefore do not work directly on the
features, but rather on a reduced and tractable representation. As a
speculative possibility, perhaps SLR-based decoding is more suited
for PFC where, unlike in visual areas (for example, V1; refs 49,50),
there is probably no intrinsic columnar structure for the relevant
representations. Moreover, PFC is implicated in a wide range of
functions, as opposed to striate and extrastriate cortex, where all
the processing is dedicated to visual stimuli. This non-uniformity
in function, reflected by the distribution of relevant neural
substrates within PFC, may well be an additional reason for the
better performance of SLR. Further studies are needed to
investigate these possibilities.

From a methodological viewpoint, our results are also of great
interest because we have successfully induced a change in
confidence after a comparatively short DecNef training session.
Previously, in Shibata et al.23 the neurofeedback training lasted 5
and 10 days. One possible interpretation is that in this previous
study, induction of activation patterns was done in visual/
perceptual processing areas, involving a single ROI, while in our
study the targeted brain areas were multiple frontoparietal
regions. In line with this view, in a recent real-time fMRI
neurofeedback experiment, deBettencourt et al.25 were able to use
a single day of neurofeedback to train attention in informed
participants, while their target regions of neurofeedback covered
as much as the entire brain volume.

Overall, our results may seem to be at odds with the currently
popular normative approach of studying confidence in psychophy-
sics and electrophysiology, which defines a confidence rating as an
optimal assessment of the strength of perception from a Bayesian
perspective19,51. Our results suggest that confidence is dependent on
late-stage processes, rather than a direct transformation of the
perceptual signal6,7,11, coded by the same neuronal substrate active
in the perceptual decision-making process7. Congruent with this
view, it has recently been reported that TMS to the premotor cortex
also affected confidence reports, even though such activity likely
took place downstream from perceptual decision-making
processes21,22. Other studies are also congruent with the view that
confidence depends on late-stage processes that are likely located in
prefrontal regions9,20,52,53.

Could one still argue that neurofeedback only changed the
‘readout’ of confidence, rather than confidence per se? We feel
that this possibility is probably difficult to address empirically.
For confidence to be a useful concept in experiments, it would be
advantageous to be able to measure it behaviourally. In a nearly
unfalsifiable manner, one could always challenge that any
manipulation only concerns the measurement or reports, but
not the phenomenon itself. However, three lines of thought may
argue against this interpretation in the present case. First, we note
that neurofeedback successfully shifted confidence bi-direction-
ally, in the expected directions, even though confidence reports
were uncoupled from fixed motor responses due to our task
design. Furthermore, the analysis of meta-d0 suggests that this
change cannot be explained simply in terms of a shift in criterion
of responding strategy. Finally, the participants were not aware of
the specific content of the representations induced by neurofeed-
back; as in previous DecNef studies23,24,26 they were unable to tell
which experimental group they were in even when asked in a
forced-choice manner. These findings together suggest that
neurofeedback changed the confidence representation itself,
as well as possibly the reporting mechanism, albeit to a limited
extent. Future studies could address this issue by, for instance,
testing whether such change will result in different ways
participants may perform cue integration. It is known that

rational observers would weight sensory cues based on their
reliability54,55; if neurofeedback changed the subjectively assessed
reliability (that is, confidence) of dot-motion-related decisions,
they may be weighted down accordingly.

The mechanism regulating the DecNef-induced selective
changes in confidence in specific directions remains unclear.
Our interpretation is that DecNef is driven by association through
stimulus contingency and neural operant conditioning56. Since
we presented noise dot motion for 2 s either during the induction
or during the following resting periods of neurofeedback, and
participants received a reward based on their induction
performance, over time, dot-motion stimuli likely became
paired with the targeted brain activity pattern representing a
specified level of confidence26. During post-DecNef behavioural
tests, we reasoned that when dot motion was presented, the
corresponding neural pattern would be re-triggered. However, we
cannot rule out the possibility that DecNef-induced neural
patterns might have carried over to the post-DecNef
psychophysical test period as a form of spontaneous brain
activity57,58, without a single, particular association with dot
motion. Future experiments can test for this possibility by having
multiple stimulus conditions, for example, colour, dot motion,
Gabor orientation, with only one stimulus set being presented
during DecNef training to test for the specificity of its effects.

In conclusion, this study gives strong support to the view
that confidence emerges as a late-stage metacognitive process. We
demonstrated with a novel and powerful neurofeedback techni-
que that we can manipulate perceptual confidence bi-directionally
without changing task performance. And, importantly, this was
achieved without the participants’ knowledge of the purpose of
the manipulation. This adds to the growing body of evidence on
how confidence is generated in the brain. Although several issues
remain to be addressed by future studies, this represents a
promising step towards a new approach for elucidating the nature
of metacognition.

Methods
Overall experimental design. The entire experiment consisted of six
neuroimaging sessions: retinotopy, a multivoxel pattern analysis (MVPA) session,
DecNef block 1 (two sessions, that is, two consecutive days), and DecNef block 2
(two sessions, that is, two consecutive days; Fig. 2a). Each participant underwent
DecNef training twice, once for high-confidence neurofeedback and once for
low-confidence neurofeedback. DecNef blocks were separated by at least 1 week,
and the order (high confidence first versus low confidence first) was counter-
balanced across the participants. The experimenter was not blinded to group
allocation. Before and after each DecNef block, the participants performed a
psychophysical test outside the scanner. Their behavioural performance in these
tests is our primary dependent variable of interest.

Participants. Eighteen participants (23.7±2.5 years old; four females) with
normal or corrected-to-normal vision participated in the first part of the study
(retinotopy mapping and MVPA). One participant had to be removed owing to
corrupted data. Participants were screened out either if they could not or declined to
come back for the DecNef sessions, or due to low decoding accuracy for confidence in
frontoparietal ROIs (less than 55% in more than two ROIs). Ten participants
(24.2±3.2 years old, three females) thus attended all ensuing neurofeedback training
experiments. The results presented in the MVPA part are from the 17 participants
that attended the initial MVPA session, while DecNef results are from the 10
participants that completed the whole experimental timeline. The number of
participants to complete all sessions was predetermined based on our pilot study.

All of the experiments and data analyses were conducted at the Advanced
Telecommunications Research Institute International (ATR). The study was
approved by the Institutional Review Board of ATR. All the participants gave
written informed consent.

Apparatus and stimuli. Visual stimuli were presented on an LCD display
(1,024� 768 resolution, 60 Hz refresh rate) during titration and the pre- and
post-test stages, and via an LCD projector (800� 600 resolution, 60 Hz refresh
rate) during fMRI measurements in a dim room. All the stimuli were created and
presented with Matlab (Mathworks) using the Psychophysics Toolbox extensions
Psychtoolbox 3 (ref. 59). Stimuli were shown on a black background and consisted
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of random dot motion (RDM). We used the Movshon–Newsome (MN) RDM
algorithm60, in which three uncorrelated random dot sequences are generated and
frames from each are interleaved to form the presented motion stimulus. For each
set, the probability that a dot is replotted in motion—as opposed to randomly
replaced—is given by the coherence value. Dots replotted in motion are defined as
‘signal’ dots. This routine generates a set of dots as a Ndots� 2 matrix of locations,
and then plots them. In plotting the next set of dots (for example, set 2), it
prepends the preceding set (for example, set 1). The RDM stimulus was created in a
square region of 20� 20 deg, but only the region within a circular annulus was
visible (outer radius: 10 deg, inner radius: 0.85 deg). Dot density was 0.5 deg� 2

(contrast 100%), with a speed of 9 deg s� 1 and size of 0.12 deg. Signal dots all
moved in the same direction (left or right, non-cardinal directions of 20 deg and
200 deg), whereas noise dots were randomly replotted. Dots leaving the square
region were replaced with a dot along one of the edges opposite to the direction of
motion, and dots leaving the annulus were faded out to minimize the edge effects.

Behavioural task for fMRI scans for MVPA and pre-/post-tests. Participants
performed the same behavioural task for the fMRI scans for MVPA and
pre/post-tests in the neurofeedback sessions. The task was a two-choice perceptual
discrimination task with a confidence rating using RDM stimuli. A pair of pre- and
post-tests was conducted for each DecNef sessions (high/low confidence). The
pre-tests were conducted before the neurofeedback session on day 1, and post-test
tests after the neurofeedback session on day 2 (see Fig. 2a).

Each trial started with a 1 s fixation period. A noise RDM (0% coherence) was
then presented for 1 s, followed by the stimulus for 2 s. Critically, the transition
from noise to stimuli was smooth and indistinguishable. After a delay of 4 s, the
participants were given 2 s to report the direction of motion (left or right) by
pressing one of two keys on a keyboard (psychophysical testing) or a response pad
(fMRI scans), and two additional seconds to report their confidence about their
decision by pressing one of four keys (four-point scale, 1 corresponding to ‘guess’,
4 to ‘totally sure’). At the end of each trial, an intertrial-interval (ITI) was inserted
(2 s for pre- and post-tests, 6 s for fMRI scans), consisting of a black background.

For fMRI scans, the participants completed 192 trials (16 trials per run, in
12 runs). In the pre/post-tests, the participants completed up to 216 trials
subdivided into three runs on each day, the mean (±s.e.m.) was 195±6 trials
completed on average. To minimize motor-response confounds in fMRI signals, in
both settings the response keys corresponding to each possible choice in both the
perceptual and confidence reports were indicated on the screen and their positions
were randomized across trials.

The task difficulty was adjusted for each participant by titrating the coherence
of RDM before the fMRI scans for MVPA. After 16 practice trials, the coherence of
the RDM was individually titrated to estimate perceptual threshold using an
adaptive staircase method (QUEST)61, outside the scanner. Trials from two parallel
QUEST tracks (40 trials each) were randomly interleaved. The coherence was
estimated to yield accuracy of 70 and 80% in each track. During the fMRI scans for
MVPA, to decode confidence level while maintaining consistent performance, the
coherence level was adjusted at the end of each fMRI run in the event that the
participant’s performance varied more than 10% from a mean of 75% correct, to
ensure that task difficulty was kept constant throughout the experiment. Mean
(±s.e.m.) coherence levels during the fMRI MVPA session were 13.3%±2.9% and
8.0%±2.5% for the upper and lower bounds, respectively. In the beginning
of the first pre-test, the coherence level was re-determined with QUEST. The
re-determined coherence level was then used during the rest of the pre- and
post-tests.

In each experimental session (fMRI scans for MVPA and pre/post tests), 62.5%
of all the trials had a coherence level around perceptual threshold of 75% accuracy,
12.5% of trials had a very high coherence (80%) and the remaining 25% trials had
noise of 0% coherence. Specifically, for the trials at perceptual threshold, the
coherence level in each trial was randomly drawn from a linear sequence within
the interval of coherence levels corresponding to 70 and 80% correct, hence
expected to yield accuracy of 75% on average. In each trial, one of two motion
directions (20 or 200 deg; Fig. 2b) was presented at one of three different possible
coherence levels (0%, threshold, or high). The order of presentation of the
orientations and coherence levels was randomized across trials. Throughout the
task, the participants were asked to fixate on a white cross (size 0.5 deg) at the
centre of display.

fMRI scans for retinotopy. On the first day, we measured participants’ retinotopic
maps to functionally define visual cortical areas and motion sensitive areas indi-
vidually, using standard retinotopic methods with blood-oxygen-level-dependent
(BOLD) signal62. Travelling-waves methods involve the sequential presentation of
stimuli that induce travelling waves of activity in the primary visual cortex62. Three
types of stimuli were used: a set of rings of increasing radius to measure the
eccentricity maps; a set of wedges, with the tip at the centre of gaze but extending
in different directions to measure angle maps; a set of moving dots, where the
direction of motion was randomly switching from in and out of the centre of gaze,
to define motion area hMT. In addition, the participants were presented with a
reference stimulus to localize the retinotopic regions in V1/V2 corresponding to
the visual field stimulated by the RDM. The reference stimulus was composed of a

coloured checkerboard pattern presented within an annulus subtending 0.85 to
20 deg from the centre of a grey screen.

fMRI scans for MVPA. The purpose of the fMRI scans in the MVPA session
was to obtain the fMRI signals corresponding to different behavioural measures
(for example, high- and low-confidence states). These behavioural measures would
then be used as labels to compute the parameters for the decoders used in the
MVPA and DecNef blocks23. During the MVPA session, the participants
performed a perceptual two-choice discrimination task with a confidence rating in
the fMRI scanner. The participants discriminated the direction of RDM with
various coherence levels, then rated their confidence (see subsection ‘Behavioural
task for fMRI scans for MVPA and pre-/post-tests’). We thus obtained BOLD
signal patterns (see subsection ‘fMRI scans preprocessing’ given below) for all of
the behavioural measures associated with the task at various levels of coherence.
Throughout the fMRI runs, the participants were asked to fixate on a white cross—
size 0.5 deg—presented at the centre of the display. A brief break period was
provided after each run on the participant’s request. Each fMRI run consisted of 16
task trials (1 trial¼ 18 s; Fig. 2b), with a 20 s fixation period before the first trial
(1 run¼ 308 s). The entire session consisted of 12 runs. The fMRI data for the
initial 20 s of each run were discarded due to possible unsaturated T1 effects.
During the response period, the participants were instructed to use their dominant
hand to press the button on a diamond-shaped response pad. Concordance
between responses and buttons was indicated on the screen and, importantly,
randomly changed across trials to avoid motor preparation confounds (that is,
associating a given response with a specific button press).

fMRI scans preprocessing. The fMRI signals in native space were preprocessed
using custom software (mrVista software package for MATLAB, freely available at
http://vistalab.stanford.edu/software/). The mrVista package uses functions and
algorithms from the SPM suite (freely available at http://www.fil.ion.ucl.ac.uk/spm/).
All the functional images underwent three-dimensional motion correction. For
retinotopic scans, we applied slice-timing correction, averaged runs across stimuli
groups and computed a coherence analysis. No spatial or temporal smoothing was
applied. The rigid-body transformations were performed to align the functional
images to the structural image for each subject. A grey-matter mask was used
to extract fMRI data only from grey-matter voxels for further analyses. The
boundaries between the retinotopic areas V1, V2, V3A and the sub-region that
corresponded to the reference stimulus within V1/V2, were identified using the
standard visual field mapping procedure62, and a motion localizer was used to
functionally define hMT. Other regions of interest (ROIs), such as the fusiform
gyrus and parts of the lateral prefrontal cortex (lateral PFC) and parietal areas, were
anatomically defined through cortical reconstruction and volumetric segmentation
using the Freesurfer image analysis suite, which is documented and freely available
for download online (http://surfer.nmr.mgh.harvard.edu/). More specifically, the
prefrontal ROIs of the lateral PFC were the IFS, the MFS and MFG. Once the ROIs
were identified, time courses of BOLD signal intensities were extracted from each
voxel in each ROI and shifted by 6 s to account for the hemodynamic delay using
the Matlab software. A linear trend was removed from the time course, and the
time course was z-score normalized for each voxel in each run to minimize the
baseline differences across runs. The data samples for computing the MVPA were
created by averaging the BOLD signal intensities of each voxel for three volumes,
corresponding to the 6 s from stimulus onset to response onset.

Algorithm for MVP analyses. We used sparse logistic regression (SLR), which
automatically selects the relevant voxels in the ROIs for MVPA63, to construct
multiple binary classifiers based on the three main behavioural variables of interest:
confidence (high versus low), discrimination accuracy (correct versus incorrect)
and motion perception (left versus right). We used SLR, as opposed to support
vector machines (SVMs) or other well-known classifying algorithms, for two main
reasons pertaining to the design of the study. First, when the number of features is
much greater than the number of samples, SLR is known to be advantageous63.
Furthermore, and more importantly, SLR concomitantly outputs a categorical
variable (the class), as well as its probability. For the neurofeedback stage, this
aspect is significant, as the signal fed back to the participants can therefore directly
be the probability that the current activation patterns belong to a given class.

The decoder, as a statistical classifier, uses the LDF to separate two classes, S1

and S2. The LDF is represented by the weighted sum of each feature value (voxels),

f ðx; yÞ ¼
XD

d¼1

ydxd þ y0 ð1Þ

where x ¼ ðx1; :::; xDÞt 2 <D is the input feature vector (the voxels from the fMRI
scans) in D dimensional space, and y¼ (y0, y1,y,yD)t is the weight vector
(including a bias term, y0). Therefore, the hyperplane where f (x, y)¼ 0 represents
the boundary between the two classes. Logistic regression allows us to calculate the
probability that an input feature (a given sample) belongs to category S2 through
the logistic function,

p ¼ 1
1þ expð� f ðx; yÞÞ � P S2jxð Þ ð2Þ
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Note that p ranges from 0 to 1, and is equal to 0.5 when f (x, y)¼ 0 (on the
boundary) and approaches 0 or 1 when f (x, y) tends towards plus or minus infinity
(far away from the boundary). Since the number of samples is fewer than the
number of features (voxels), logistic regression is not directly applicable to the data
set. Therefore, a dimensionality reduction was implemented by pruning out
irrelevant voxels through automatic relevance determination, thereby treating the
whole data matrix as sparse. For the original and more detailed version, please refer
to Yamashita et al.63

MVP analyses data sets and cross-validation. For unbalanced data sets (that is,
task accuracy—correct versus incorrect trial classification), we used a weighted
samples method for the majority group in the training data sets. That is, by design
the proportion of correct to incorrect trials is B3:1, and therefore each sample in
the correct trials group is automatically assigned a weighto1 (B0.33), to penalize
the sample size bias for the differential ratios.

For each MVPA, we performed a k-fold cross-validation, where the entire data
set is repeatedly subdivided into a ‘training set’ and a ‘test set’. The two can be seen
as independent data sets that are used to fit the parameters of a model (decoder)
and evaluate the predictive power of the trained (fitted) model, respectively.
For each behavioural variable of interest, and for each participant the number of
folds was automatically adjusted between k¼ 9 and k¼ 11 to be a (close) divisor of
the number of samples in the data set. Thus, the number of folds in each cross-
validation procedure was B10, a typical value for k-fold cross-validation
procedures64. The k-fold cross-validation procedure is critical in any predictive
classification problem as it serves the purpose of limiting overfitting, and gives an
index of the generalizability of the model64,65. Furthermore, the SLR-based
classification was optimized by using an iterative approach. That is, during each
fold of the cross-validation, the process was repeated n times (n¼ 10). On each
iteration, the selected features were removed from the pattern vectors, and only
features with unassigned weights were used for the next iteration. At the end of the
k-fold cross-validation, the test accuracy was averaged for each iteration across
folds, to evaluate the accuracy at each iteration. The optimal number of SLRs
(number of iterations) was thus chosen and used for the final computation of the
decoder used in the neurofeedback training procedure. Importantly, the confidence
decoder used in the DecNef was constructed by using only correct trials, as
compared with the main analysis for which both correct and incorrect trials were
used. Furthermore, the calculation of weights used for DecNef was done using the
entire data set and the optimal number of iterations (as described above), while we
did cross-validation (using a subset of the data for weights’ calculation) to measure
decoding accuracy.

Confidence data set. Confidence was rated on a four-point scale, and hence we
reassigned the intermediate levels (2, 3) to both the low- and high-confidence
classes to collapse the four initial confidence levels to two levels, and equate the
number of trials in each class. For each participant we first merged one inter-
mediate class with the high- or low-confidence class depending on the total
number of trials. Then, to equate the number of trials, we added randomly sampled
trials from the left-out intermediate confidence level to the confidence class now
having a lower total number of trials. This re-balancing was based on the
confidence rating response distribution, and on the final number of trials, and was
repeated n times (n¼ 10, owing to the low number of resampled trials). Given
these sampling sets the main analysis reported in the ‘Results’ section was
performed as follows. To directly compare the information contained in multivoxel
patterns pertaining to the confidence dimension across various ROIs, the best
sample set was voted by k-fold cross-validation mean accuracy, specifically
optimizing for frontoparietal ROIs, given the a priori assumption that these areas
are critical for generating confidence. Therefore, once a sample set was selected, the
cross-validation mean accuracy for that particular set was used for each ROI, thus
ensuring that the comparison would pertain to exactly the same samples and the
information they contained. The rationale behind this approach is that if a
multivoxel pattern is found for discriminating confidence in frontoparietal areas,
does this same sample set also contain confidence-related information in visual
processing areas? We also ran a more conservative analysis, where all the sample
sets were averaged after taking the mean cross-validated accuracy for each set, and
the same pattern of results was found; namely, decoding of confidence was higher
in frontoparietal areas as compared with visual processing regions (Supplementary
Fig. 1).

Rectification analysis. In addition, in the rectification analysis, we proceeded as
follows. To predict two classes S1 and S2, the decoder evaluates a certain linearly
weighted voxel value, the LDF. The LDF is a continuous variable, and for each data
sample the decoder then binarizes it into a categorical variable. When the value of
the continuous variable is positive, the decoder predicts class S2, and when it is
negative, the decoder predicts class S1, the boundary being at zero. If the
relationship between two binary measures (in this case, from perceptual responses
to accuracy, or confidence) is nonlinear, a decoder with the LDF built from the first
will not predict the second. Thus, in the rectification analysis, we apply a nonlinear
transformation such that LDFnew¼ abs(LDF) before using the new LDF value to
assign a label to a given sample (trial). The new boundary for discriminating the

two classes is assessed for each ROI, with an iterative approach (i¼ 200, step¼ 0.1,
start threshold¼ 0.1). In the correct versus incorrect rectification, because of the
imbalance in the two categories, we performed a sampling procedure to randomly
create equally sized sample sets. The procedure was repeated n times (n¼ 50). The
iterative boundary evaluation process between the two classes described above was
repeated for each fold (sample set). Finally, an optimal set (with equal sample sizes)
is obtained with an optimal boundary between the two classes LDF distributions,
for each ROI and participant. In addition, we also performed the analyses where
the optimal boundary is evaluated at the group level, as well as taking the average of
all the sampling folds and thresholds. These methods being not equally con-
servative, we report the accuracies of the rectifications averaged between the three
methods outputs, thus providing a good measure of the information contained in
the multivoxel patterns pertaining to both dimensions (perceptual information and
task accuracy). In the case of rectification to confidence, only the sample set used in
the confidence decoder (the set selected for optimal decoding in frontoparietal
areas) was used. This ensured that the exact same samples were used for all the
ROIs. Importantly, for both rectification analyses, the weights from the motion
perception decoder were obtained by using all the trials at threshold coherence, to
ensure that extreme values of coherence were not the main drivers for the analysis.
Specifically, that different coherence values, naturally associated with a larger
fraction of correct or incorrect responses (high coherence with correct responses,
and low coherence with incorrect responses), would not trivialize the analysis.

ROIs and voxels for classification. Each binary decoder was trained to classify a
pattern of BOLD signals into one of the above mentioned classes using data
samples obtained from up to 120 trials with threshold coherence (out of a
maximum of 192 total trials), collected in up to 12 fMRI runs. As a result, the
inputs to the decoders were the participants’ moment-to-moment brain activations,
while the outputs of the decoders represented the calculated likelihood of each
behavioural measure. The mean (±s.e.m.) number of voxels for decoding was
690±20 for V1/V2, 569±45 for V3A, 255±21 for hMT, 517±16 for FFG,
1,802±63 for IPL, 490±19 for IFS, 412±16 for MFS and 1,350±42 for MFG.

For the control analysis with equal number of voxels in each ROI, the data
samples were created with the following steps. For each voxel, estimated BOLD
signal amplitude and its t-value were computed on the basis of a univariate GLM in
a contrast between stimulus presentation and a blank baseline (the ITI). Then,
voxels were sorted according to their amplitudes (t-values). For each participant,
the ROI with the lowest number of voxels was determined (lowest number of
voxels¼Nmin). For all the other ROIs, we then selected the Nmin most significant
voxels to run the control MVPA.

Neurofeedback sessions. Each DecNef block consisted of two consecutive days of
fMRI scanning, during which the participants implicitly learned to induce brain
activation patterns corresponding to high or low confidence. Each participant did
both high- and low-confidence DecNef, and the order of confidence inductions was
counterbalanced across the participants (that is, high then low versus low then
high). After each scanning session, the participants were asked to describe their
strategies in making the disc size larger. The answers varied from ‘I was counting’,
to ‘I was focusing on the disc itself’, to ‘I was thinking about food’ (see
Supplementary Table 6). At the end of the experiments, the participants were asked
to which group they thought they were assigned to. The participants could answer
only at chance (n¼ 5, 2 months later; and n¼ 4, 5 months later—one participant
could not be joined; Chi-square test, w2¼ 0.225, P¼ 0.64).

On each day of a given DecNef block, the participants engaged in up to 11 fMRI
runs. The mean (±s.e.m.) number of runs per day was 10±0.1 across sessions and
participants. Each fMRI run consisted of 16 trials (1 trial¼ 20 s) preceded by a 30 s
fixation period (1 run¼ 350 s). The fMRI data for the initial 10 s were discarded to
avoid unsaturated T1 effects. Throughout a run, the participants were instructed to
fixate their eyes on a white bull’s-eye at the centre of a white disc (0.75 deg radius)
presented at the centre of the display. After each run, a brief break period was
provided on the participant’s request. Each trial (Fig. 6) consisted of an induction
period (6 s), a fixation period (6 s), a feedback period (up to 2 s) and an ITI (6 s), in
this order.

The participants were instructed to regulate their brain activity during the
induction period, with the goal of making the size of a solid white disc, presented
later in the feedback period, as large as possible. The experimenters provided no
further instructions or strategies. During the fixation period, the participants were
asked to simply fixate on the central point and rest. This period was inserted
between the induction and the feedback periods to account for the hemodynamic
delay, assumed to last 6 s. Either during the induction period, or at the beginning of
the fixation period (pseudo-random onsets: 2, 4, 6 or 8 s from trial start) a 2 s noise
RDM was also presented. Pseudo-random onsets were selected to ensure minimal
interference and maximal effect of the RDM on the induction process.
Subsequently, during the feedback period, a grey disc was presented for up to 2 s.
The size of the disc displayed in the feedback period represented how much the
current BOLD signal patterns obtained in the induction period corresponded to
activation patterns measured when the participants were in a given confidence
state, while performing the perceptual task in the MVPA session. The grey disc was
always enclosed in a larger white concentric circle (5 deg radius), which indicated
the disc’s maximum possible size. The feedback period was followed by an ITI that
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lasted 6 s, during which the participants were asked to fixate on a central white
point and rest. This period was followed by the start of the next trial.

The size of the disc presented during the feedback period was computed at the
end of the fixation period with the following steps23. First, measured functional
images during the induction period underwent three-dimensional motion
correction using Turbo BrainVoyager (Brain Innovation). Second, time-courses of
BOLD signal intensities were extracted from each of the voxels identified in the
MVPA session for each of the four ROIs (IPL, IFS, MFS and MFG), and were
shifted by 6 s to account for the hemodynamic delay. Third, a linear trend was
removed from the time course, and the BOLD signal time course was z-score
normalized for each voxel using BOLD signal intensities measured for 20 s starting
from 10 s after the onset of each fMRI run. Fourth, the data sample to calculate the
size of the disc was created by averaging the BOLD signal intensities of each voxel
for 6 s in the induction period. Finally, the likelihood of each confidence state was
calculated from the data sample using the confidence decoder computed in the
MVPA session. The size of the disc was proportional to the averaged likelihood
(ranging from 0 to 100%) of the target confidence level (high/low) assigned to each
participant on a given DecNef block from the four different frontoparietal ROIs.
Importantly, the participants were unaware of the relationship between their
activation patterns induction and the size of the disk itself. The target confidence
was the same throughout a DecNef block. In addition to a fixed compensation for
participation in the experiment, a bonus of up to 3,000 JPY was paid to the
participants based on the mean size of the disc on each day.

Offline analyses. The likelihood of inducing the targeted confidence level was
taken as the measure of neurofeedback success (since it is a binary problem, we can
denote the likelihood of high-confidence induction as p, and it follows that the
likelihood for low-confidence induction can be labelled as 1� p). Furthermore, the
induction success was estimated with the ‘best’ ROI; that is, the ROI among the
four used for neurofeedback that showed the highest contribution to successfully
inducing the target confidence state. The data were averaged for each participant
across all the trials and all runs from each day. In the main text, we report results
from the session immediately preceding the post-test for each DecNef training
group (second day). The same analysis applied to day 1 of the neurofeedback
training for aggregate DecNef conditions (high- and low-confidence DecNef, see
Supplementary Fig. 2) correlated with confidence changes between pre- and
post-test (n¼ 20, Pearson’s r¼ 0.701, P¼ 0.0012), but not when taken singularly
(high-confidence DecNef, n¼ 10, Pearson’s r¼ 0.446, P¼ 0.229; low-confidence
DecNef, n¼ 10, Pearson’s r¼ 0.010, P¼ 0.979). A control analysis, carried out by
using the averaged likelihood of the four frontoparietal ROIs yielded comparatively
similar results. As in the main analysis reported in the ‘Results’ section, induction
success on the second day of the neurofeedback training for each DecNef condition
(high and low confidence), that is, the session immediately preceding post-test,
correlated with the change in confidence (n¼ 20, Pearson’s r¼ 0.562, P¼ 0.0099).
Similarly, this effect was mainly driven by the high-confidence DecNef condition
(n¼ 10, Pearson’s r¼ 0.870, P¼ 0.0012); the correlation was not statistically
significant for low-confidence DecNef alone (n¼ 10, Pearson’s r¼ 0.061,
P¼ 0.867).

To investigate the relative contributions of the frontal and parietal brain regions
based on the ‘best’ ROI, a further analysis was conducted. First, for each participant
each ROI was assigned a value given by the mean of the daily averaged induction
success across 4 days of neurofeedback (high-confidence and low-confidence
DecNef, each comprising 2 days of neurofeedback). Then, ROIs from the frontal
region were pooled together, and likewise for the parietal region, giving a single
value representing each region for each participant. Finally, the participants were
assigned to either the ‘parietal’ group or the ‘frontal’ group, based on the maximum
of the computed values.

We performed one further offline test, the ‘information communication
criterion’ analysis: using a sparse linear regression to predict a neurofeedback signal
in each of the frontoparietal ROIs (the likelihood of the target confidence during
the induction stage), from an activation pattern in each of the seven other areas
(four visual areas, and the three remaining frontoparietal ROIs)23. The activation
pattern from the ROI itself acted as control. A predicted value was obtained as the
linearly weighted sum of the voxel activities in each area. Prediction accuracy was
defined as a coefficient of determination and evaluated by a leave-one-day-out
cross-validation procedure. That is, data measured on one day during the induction
stage were treated as the test data while data measured on the remaining days were
used for training the sparse linear regression decoder to predict trial-by-trial
likelihoods in the target ROI (one each of IPL, IFS, MFS or MFG). Four cross-
validation sets were thus generated for each ROI. The coefficient of determination
here indicates the proportion of variability in the likelihoods on a trial-by-trial basis
in the target ROI that is explained by voxel activities in each other area.
The coefficient of determination for each area was first averaged over the
cross-validation sets and then across the participants. The analysis was repeated for
the neurofeedback signal given by likelihood averaged across the four
frontoparietal ROIs (representing the actual feedback to the participants).

Last, we ran a control GLM analysis contrasting successful versus unsuccessful
induction trials during neurofeedback blocks to investigate whether overall increase
or decrease in activation in the target regions could explain the obtained results.
For this analysis, a GLM model was fitted to each voxel, separately for each day

(session) and DecNef block (high- and low-confidence DecNef). The trials
considered as successful had an induction likelihood P40.5, unsuccessful trials had
a likelihood Pr0.5, Betas were extracted from each voxel and averaged across
target ROIs (IPL, IFS, MFS, MFG). Reported results are the mean (±s.e.m.) betas
across the participants.

Nonlinear mathematical modelling. We constructed a mathematical model to
objectively examine the effects of high- and low confidence DecNef, a persistence of
learning (of DecNef effect) owing to 1-week elapse, and the weaker second week
effect. The model was fit to four measurement values of perceptual confidence at
the four time points for each participant and possesses four model parameters.
The Xi

j variables represent the experimentally measured confidence values, while X̂i
j

are the estimated confidence values, for each participant (with i¼ 1:10; that is,
behavioural outcome of DecNef effects) at each time point (with j¼ 1:4); The main
four-parameter nonlinear model to describe DecNef effects is formally outlined as
follows.

X̂i
1 ¼ B ð3Þ

for i¼ 1:5, group low–high

X̂i
2 ¼ Bþ e � D ð4Þ

X̂i
3 ¼ Bþ e � D � a ð5Þ

X̂i
4 ¼ Bþ e � D � aþ g � D ð6Þ

for i¼ 6:10, group high–low

X̂i
2 ¼ BþD ð7Þ

X̂i
3 ¼ BþD � a ð8Þ

X̂i
4 ¼ BþD � aþ e � g � D ð9Þ

Error ¼ �i�j Xi
j � X̂i

j

� �2
¼ Fða; e; g;DÞ ð10Þ

where B is the initial baseline (0—the realigned confidence level); D, the change
in confidence by high-confidence DecNef in the first week; e, the ratio of
low-confidence DecNef effect normalized by high-confidence DecNef effect; g,
the reduced second-week DecNef effect; and a, the learning persistence during the
week-long interval. Submodels are defined by setting different parameters to 0 or 1,
one at a time or concomitantly following complexity logic. This gives rise to a
hierarchical group of models, from simpler to more complex (capturing single or
increasingly more aspects of DecNef effects on confidence). The first model is the
simplest and only estimates D, with the other parameters setting as e¼ 0, g¼ 1,
a¼ 1. The second model, by complexity order, assumes up and down-DecNef
effects, estimates D and e, while g¼ 1, a¼ 1. The third model estimates D, e and g,
with a¼ 1. Further DecNef-based models estimate D, e and a, with g¼ 1; or
estimate D, e and a, with g¼ 0; or estimate D, e and g, with a¼ 0; or finally,
estimate D, g, and a, with e¼ 0.

We considered alternative models that do not take into account DecNef
direction assumptions or a posteriori conceptions. These are a one-parameter
constant confidence model (confidence does not change, is constant throughout the
experiment), with two versions: k ¼ Xi

1, or k ¼ meanðXi
2;Xi

3;Xi
4Þ: Other free

models are a within-week constant confidence, and within-week constant
confidence with two or four additional linear parameters.

Model comparison. For model comparison, we used the AIC33.
Raw AIC is computed according to the following equation:

AIC ¼ nlog ŝ2
� �

þ 2k ð11Þ
where ŝ2 ¼ Residual Sum of Squares

n , n is the sample size and k the number of parameters
in the model. In our set of global models, n¼ 30 (because the initial time point, B,
was 0 and thus not considered), and k varied from 1 to 4. In the modelling reported
for small sample sizes (that is, n/koB40), the second-order or AICc should be
used instead. Although the AICc formula assumes a fixed-effects linear model with
normal errors and constant residual variances, while our models are nonlinear, the
standard AICc formulation is recommended unless a more exact small-sample
correction to AIC is known34:

AICc ¼ AICþ 2 � k � ðkþ 1Þ
ðn� k� 1Þ ð12Þ

For comparing models, two useful metrics are DAICc and Akaike weights (wi).
Di

AICc is a measure of the distance of each model relative to the best model
(the model with the most negative, or lowest, AIC value), and is calculated as:

Di
AICc ¼ AICci�minðAICcÞ ð13Þ

As indicated in Burnham and Anderson34, Di
AICco2 suggests substantial evidence

for the i-th model, while Di
AICc410 indicates that the model is implausible. Akaike

weights (wi) provide a second measure of the strength of evidence for each model,
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are directly related to Di
AICc and are computed as:

wi ¼
exp �Di

AICc=2
� �PR

i¼1 exp �Di
AICc=2

� � ð14Þ

AIC analysis results are reported in Supplementary Table 7, with values reported
being AICc, DAICc and Akaike weights (wi).

In cases such as ours, where high degrees of model selection uncertainty exist
(the best AIC model is not strongly weighted), a formal solution is to compute
parameter estimates through model-averaging. For this approach, two procedures
may be used, depending on the results. The first approach makes use of only a
limited subset of models that are closest to the current best model (DAICco2),
while the second approach will consider all models (in fact, this accounts to
consider all models with wia0). We applied the first approach, selecting only
models with high likelihood. Parameters are estimated according to the equation:

�̂b ¼
PR

i¼1 wib̂iPR
i¼1 wi

ð15Þ

where b̂i is the estimate for the predictor in a given model i, and wi is the Akaike
weight of that model.

Unconditional error, necessary to compute the unconditional confidence
interval for a model-averaged estimate, can be calculated according to the following
equation:

bse �̂b
� �

¼
XR

i¼1

wi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cvar bbi� �

þ bbi� b�bi� �2
r

ð16Þ

Where cvarðb�biÞ is the variance of the parameter estimate in model i, and b�bi and b�b
are as defined above. The confidence interval is then simply given by the end
points:

b̂ � z1� a=2bse b̂
� �

ð17Þ

For a 90% confidence interval, z1� a/2¼ 1.65.
Note that the unconditional variance comprises two terms, the first one local

(internal variance of model i), while the second one global, in that it represents the
variance between the common estimated parameter and the true value in model i.
Since these models are very stable and robust, changing the initial condition
set does not lead to different solutions, thus providing proof that solutions
reached are globally best. Therefore, to assess the local variance, we recreated
surrogate data sets by selecting k samples out of a population of n samples, with all
possible combinations. This is equivalent to the binomial coefficient, thus
creating N !

K ! ðN �KÞ ! subgroups. For the estimation, k¼ 7, as the first non-even value
for k4n/2 (size of each group). For each model, the parameters were
independently estimated, and we thus calculated the population variance.

Statistical analyses and computational routines. All statistical analyses were
performed with IBM SPSS for Windows, version 21.0, and MATLAB Version
7.13.0.564 (R2011b) (MathWorks), both with built-in functions as well as with
functions commonly available on the MathWorks online repository or custom
written code.

For MVPA results, mean decoding accuracies were averaged across the
participants. Statistical analyses were performed with two-tailed t-tests against a
chance accuracy of 50%. For multiple comparisons, we used the Holm–Bonferroni
procedure (see below), and we report corrected P values.

The effects of DecNef on behavioural data were statistically assessed using
repeated measures ANOVA tests as well as two-tailed, or single-tailed were
warranted, t-tests were utilized for comparisons.

For multiple comparisons, we used the Holm–Bonferroni correction, where the
P values of interest are ranked from the smallest to the largest, and the significance
level a is sequentially adjusted based on the formula a

ðn� iþ 1Þ for the i-th smallest P
values. In the text, for enhanced clarity, we present the results as corrected P values.

We used Matlab optimization routines to solve our systems of nonlinear
equations with a nonlinear programming solver, under least squares minimization.
The Matlab solver was fmincon, utilizing the following optimization options. A
sequential quadratic problem (SQP) method was used, specifically, the ‘SQP’
algorithm. This algorithm is a medium scale method, which internally creates full
matrices and uses dense linear algebra, thus allowing additional constraint types and
better performance for the nonlinear problems outlined in the previous section. As
compared with the default fmincon ‘interior point’ algorithm, the ‘SQP’ algorithm
also has the advantage of taking every iterative step in the region constrained by
bounds, which are not strict (a step can exist exactly on a boundary). Furthermore,
the ‘SQP’ algorithm can attempt to take steps that fail, in which case it will take a
smaller step in the next iteration, allowing greater flexibility. We set bounded
constraints to allow only certain values in the parameter space to be taken by the
estimates. As such, boundaries were set as: DA [0 Inf], e A [� 1 0], gA [0 1], and a
A [0 1]. The function tolerance was set at 10� 20, the maximum number of iterations
at 106 and the maximum number of function evaluations at 105.

MRI parameters. The participants were scanned in a 3T MR scanner (Siemens,
Trio) with a head coil in the ATR Brain Activation Imaging Center. The functional

MR images for retinotopy, the MVPA session and DecNef sessions were acquired
using gradient EPI sequences for measurement of BOLD signals. In all the fMRI
experiments, 33 contiguous slices (TR¼ 2 s, TE¼ 26 ms, flip angle¼ 80 deg, voxel
size¼ 3� 3� 3.5 mm3, 0 mm slice gap) oriented parallel to the AC-PC plane were
acquired, covering the entire brain. For an inflated format of the cortex used for
retinotopic mapping and an automated parcellation method (Freesurfer),
T1-weighted MR images (MP-RAGE; 256 slices, TR¼ 2 s, TE¼ 26 ms, flip
angle¼ 80 deg, voxel size¼ 1� 1� 1 mm3, 0 mm slice gap) were also acquired
during the fMRI scans for the MVPA.

Data availability. All relevant data are available from the authors on request. All
computer code used to generate results that are central to the paper’s conclusions can
be accessed following the links hereafter. For the decoding analysis, the SLR toolbox
can be freely downloaded from http://www.cns.atr.jp/~oyamashi/SLR_WEB.html.
For the meta-d0 analysis of behavioural data, we used the Matlab functions freely
available at http://www.columbia.edu/Bbsm2105/type2sdt/; (ref. 36).

References
1. Kepecs, A. & Mainen, Z. F. A computational framework for the study of

confidence in humans and animals. Philos. Trans. R Soc. Lond. B Biol. Sci. 367,
1322–1337 (2012).

2. Fleming, S. M., Dolan, R. J. & Frith, C. D. Metacognition: computation, biology
and function. Philos. Trans. R Soc. Lond. B Biol. Sci. 367, 1280–1286 (2012).

3. Hampton, R. R. Multiple demonstrations of metacognition in nonhumans:
converging evidence or multiple mechanisms? Comp. Cogn. Behav. Rev. 4,
17–28 (2009).

4. Terrace, H. S. & Metcalfe, J. The Missing Link in Cognition: Origins of
Self-Reflective Consciousness (Oxford Univ. Press, 2005).

5. Smith, J. D., Shields, W. E. & Washburn, D. A. The comparative psychology of
uncertainty monitoring and metacognition. Behav. Brain Sci. 26, 317–339
discussion 340–373 (2003).

6. Kepecs, A., Uchida, N., Zariwala, H. A. & Mainen, Z. F. Neural correlates,
computation and behavioural impact of decision confidence. Nature 455,
227–231 (2008).

7. Kiani, R. & Shadlen, M. N. Representation of confidence associated with a
decision by neurons in the parietal cortex. Science 324, 759–764 (2009).

8. Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. J. & Rees, G. Relating
introspective accuracy to individual differences in brain structure. Science 329,
1541–1543 (2010).

9. Rounis, E., Maniscalco, B., Rothwell, J. C., Passingham, R. E. & Lau, H.
Theta-burst transcranial magnetic stimulation to the prefrontal cortex impairs
metacognitive visual awareness. Cogn. Neurosci. 1, 165–175 (2010).

10. Komura, Y. et al. Responses of pulvinar neurons reflect a subject’s confidence in
visual categorization. Nat. Neurosci. 16, 749–755 (2013).

11. Hebart, M. N., Schriever, Y., Donner, T. H. & Haynes, J.-D. The relationship
between perceptual decision variables and confidence in the human brain.
Cereb. Cortex 26, 118–130 (2014).

12. Smith, V. L., Kassin, S. M. & Ellsworth, P. C. Eyewitness accuracy and
confidence: within- versus between-subjects correlations. J. Appl. Psychol. 74,
356–359 (1989).

13. DePaulo, B. M., Kelly, C., Harris, C., Lindsay, J. J. & Laura, M. The accuracy-
confidence correlation in the detection of deception. Pers. Soc. Psychol. Rev. 1,
346–357 (1997).

14. Fetsch, C. R., Kiani, R., Newsome, W. T. & Shadlen, M. N. Effects of cortical
microstimulation on confidence in a perceptual decision. Neuron 83, 797–804
(2014).

15. Koizumi, A., Maniscalco, B. & Lau, H. Does perceptual confidence facilitate
cognitive control? Atten. Percept. Psychophys. 77, 1295–1306 (2015).

16. Wilimzig, C., Tsuchiya, N., Fahle, M., Einhäuser, W. & Koch, C. Spatial
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