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Promotion of mitochondrial biogenesis by necdin
protects neurons against mitochondrial insults
Koichi Hasegawa1, Toru Yasuda2,w, Chinatsu Shiraishi1, Kazushiro Fujiwara1, Serge Przedborski3,

Hideki Mochizuki2 & Kazuaki Yoshikawa1

Neurons rely heavily on mitochondria for their function and survival. Mitochondrial

dysfunction contributes to the pathogenesis of neurodegenerative diseases such as

Parkinson’s disease. PGC-1a is a master regulator of mitochondrial biogenesis and function.

Here we identify necdin as a potent PGC-1a stabilizer that promotes mitochondrial biogenesis

via PGC-1a in mammalian neurons. Expression of genes encoding mitochondria-specific

proteins decreases significantly in necdin-null cortical neurons, where mitochondrial function

and expression of the PGC-1a protein are reduced. Necdin strongly stabilizes PGC-1a

by inhibiting its ubiquitin-dependent degradation. Forced expression of necdin enhances

mitochondrial function in primary cortical neurons and human SH-SY5Y neuroblastoma cells

to prevent mitochondrial respiratory chain inhibitor-induced degeneration. Moreover,

overexpression of necdin in the substantia nigra in vivo of adult mice protects dopaminergic

neurons against degeneration in experimental Parkinson’s disease. These data reveal that

necdin promotes mitochondrial biogenesis through stabilization of endogenous PGC-1a to

exert neuroprotection against mitochondrial insults.
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M
ammalian neurons require high mitochondrial
activities to generate a large amount of ATP for their
signalling events such as action potential generation

and excitatory synaptic transmission1. Mitochondria are also
involved in neuronal death and contribute to neuroprotection
against various detrimental stresses2. Furthermore, mitochondrial
abnormalities are suggested to contribute to the pathogenesis of
neurodegenerative diseases such as Parkinson’s disease (PD),
amyotrophic lateral sclerosis (ALS), Alzheimer’s disease and
Huntington’s disease3,4. However, little is known about the
regulatory mechanisms of mitochondrial biogenesis in
mammalian neurons under physiological and pathological
conditions.

The peroxisome proliferator-activated receptor g coactivator-1
(PGC-1) family, which consists of PGC-1a, PGC-1b and PRC,
plays a central role in governing a transcriptional regulatory
network for mitochondrial biogenesis and respiratory function5.
The PGC-1 family transcriptional coactivators enhance the
activities of the nuclear respiratory factors NRF1 and NRF2,
which induce transactivation of many genes encoding
mitochondria-specific proteins involved in respiratory chain,
mitochondrial DNA transcription/replication and protein
import/assembly6. PGC-1a is the first identified PGC-1 family
member7, and its expression and function have been most
extensively studied5. In non-neuronal cells, expression of PGC-1a
is dynamically regulated at the transcriptional and post-
translational levels in response to various environmental stimuli
such as temperature, nutritional status and physical activity5,8.
However, there is limited information on the regulation of
neuronal PGC-1a and its involvement in mitochondrial
biogenesis.

Necdin is a MAGE (melanoma antigen) family protein
originally isolated from neurally differentiated embryonal
carcinoma cells9. Necdin is expressed in virtually all neurons
throughout the nervous system10. The necdin gene (gene symbols;
Ndn for mouse, NDN for human) is expressed only from the
paternal allele via genomic imprinting, a mammal-specific
epigenetic regulation of gene expression11,12. Necdin interacts
with the major transcription factors E2F1 and p53 to suppress cell
proliferation and apoptosis13–16. Moreover, necdin binds to Sirt1,
an NADþ -dependent protein deacetylase involved in the
regulation of energy homeostasis, and facilitates Sirt1-mediated
deacetylation of the transcription factors p53 and FoxO1 in
neurons16,17. These findings suggest that necdin interacts with
major nuclear proteins to modulate the transcriptional regulation
networks in mammalian neurons.

We here report that necdin facilitates neuronal mitochondrial
biogenesis via PGC-1a stabilization by suppressing its proteolytic
degradation in the ubiquitin-proteasomal system. Necdin forms a
stable complex with PGC-1a in the nucleus of cortical neurons
to maintain high mitochondrial activities. Furthermore, we
demonstrate that necdin exerts potent neuroprotective effects
on dopaminergic neurons against mitochondrial complex I
inhibitors that are commonly used for modelling PD18. Our
findings will provide a better understanding of the regulatory
mechanism underlying neuronal mitochondrial biogenesis under
physiological and pathological conditions.

Results
Necdin promotes neuronal mitochondria-related gene expression.
To investigate whether necdin modulates specific gene tran-
scription networks in brain neurons, we performed microarray-
based gene expression profiling in necdin-null cortical neurons
(GEO accession; GSE63498). In gene ontology analysis for
reduced gene expression in necdin-null neurons, the term

mitochondrion in the cellular component category was the most
significantly enriched (Fig. 1a). Of 61 downregulated genes
(Fig. 1b and Supplementary Table 1), 10 genes encoding
mitochondria-specific proteins were selected, and their expression
levels were determined by quantitative reverse transcription–PCR
(qRT–PCR) (Fig. 1c). In necdin-null neurons, the mRNA levels of
Tomm20, Tomm22, Tomm40, Timm9 and Timm50, which encode
mitochondrial import receptors, decreased by 41–53%, and those
of Ndufs3 and Atp5c1, which encode electron transport chain-
associated enzyme components, decreased by 24% and 32%,
respectively. However, cytochrome c (Cyc1), Atp5d and Atp5f1
mRNA levels were unchanged. We also quantified the expression
of mitochondrial biogenesis-regulatory genes by qRT–PCR. Nrf1,
Gabpa (also known as Nrf2) and Tfam mRNA levels decreased
significantly in necdin-null neurons, whereas no significant
change in PGC-1a (Ppargc1) mRNA expression was observed.
The gene expression signature of necdin-null neurons indicates
that necdin promotes mitochondrial biogenesis in cortical
neurons.

Necdin promotes neuronal mitochondrial biogenesis. We then
examined whether mitochondrial amounts and activities are
reduced in necdin-null neurons. The levels of mitochondrial
DNA (D-loop) and the mitochondrial marker MitoTracker Green
FM, which localizes to mitochondria regardless of mitochondrial
membrane potential, were reduced by 46% and 31%, respectively,
in necdin-null neurons (Fig. 1d,e). The levels of oxidative
phosphorylation complexes I–V (CI–CV) subunits were also
reduced in necdin-null neurons by 85% (CI, NDUFB8), 61% (CII,
SDHB), 36% (CIII, UQCRC2), 78% (CIV, MTCO1) and 47%
(CV, ATP5A) (Fig. 1f,g). These results suggest that endogenous
necdin promotes mitochondrial biogenesis in cortical neurons.

We determined the effect of necdin on mitochondrial
metabolic activity in primary cortical neurons using 3-[4,5-
dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT), a
tetrazolium dye metabolized into water-insoluble formazan
mainly in mitochondria. Necdin-null primary neurons exhibited
normal morphology, but contained reduced MTT-formazan
deposits (Fig. 2a). In quantitative MTT assay, MTT-formazan
levels in necdin-null neurons decreased by 41% in the conditions
where cellular damage was absent as assessed by lactate
dehydrogenase (LDH) release (Fig. 2b). We further analysed
oxidative phosphorylation complex I activity in primary cortical
neurons by immunocapture assay. Complex I activity was
reduced in necdin-null neurons by 60% (Fig. 2c,d). Cellular
ATP levels were also significantly reduced in necdin-null neurons,
but not in necdin-null neural progenitor cells (NPCs), indicating
that necdin promotes the mitochondrial activity predominantly
in differentiated neurons (Fig. 2e). We then examined whether
mitochondrial membrane potential is reduced in necdin-null
neurons. The levels of chloromethyl-X-rosamine, a mitochondrial
membrane potential-dependent fluorescent probe, were reduced
by 28% in necdin-null neurons (Fig. 2f).

PGC-1a serves as a master regulator of mitochondrial
biogenesis in mammalian cells5,7. Because we found no
significant change in PGC-1a expression at the mRNA level in
necdin-null neurons, we analysed the expression of PGC-1a at
the protein level using a novel antibody raised against mouse
PGC-1a (PGCAN) (Supplementary Fig. 1). In NPCs and cortical
neurons, PGC-1a was detected as a major 128-kDa band by
western blotting, and wild-type cortical neurons expressed higher
PGC-1a levels than wild-type NPCs and necdin-null cortical
neurons (Fig. 2g). Furthermore, the expression level of PGC-1a in
necdin-null neurons was 55% of the wild-type control level
(Fig. 2h,i). We then analysed the expression of the PGC-1a
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protein in various tissues at embryonic day 14.5 (E14.5) by
western blotting (Fig. 2j). PGC-1a was clearly detected in the
brain, slightly in the skeletal muscle (gastrocnemius) and hardly

detectable in the heart and liver. ATP levels in the brain and
muscle, where necdin was highly expressed, were significantly
lower in necdin-null mice than in wild-type mice at E14.5
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Figure 1 | Necdin promotes the expression of mitochondria-related genes in primary cortical neurons. (a) Gene expression profiling of primary cortical

neurons prepared from wild-type and necdin-null mice at E14.5 was performed using DNA microarrays. Enriched gene ontology terms of genes whose

expression decreased (420% at Po0.05) in necdin-null cortical neurons. P value cutoff (yellow line), 1.3¼ � log10(0.05). (b) Clustered mitochondrion-

related genes whose expression changed significantly (Po0.05) between wild-type (WT) and necdin-null (knockout; KO) neurons (yellow, up; blue, down;

n¼ 3). Full data are in Supplementary Table 1. (c) Expression levels of mitochondria-related genes and mitochondrial biogenesis-regulatory genes in cortical

neurons were determined by qRT–PCR (n¼ 3–6). (d) D-loop DNA (mtDNA) levels were measured by qRT–PCR and normalized to nuclear gene Rplp0 levels

(n¼4). (e) MitoTracker Green FM (MT Green) fluorescence levels were quantified by fluorescence-activated cell sorting analysis (n¼4). Mean

fluorescence intensity: 367 (WT); 268 (KO). (f,g) Expression of oxidative phosphorylation complexes I–V subunits was analysed by immunoblotting using

antibodies against the enzyme subunits indicated (f), and these bands were quantified by densitometry (n¼4) (g). Data represent means±s.e.m.;

*Po0.05, **Po0.01, ***Po0.005, NS, not significant at PZ0.05; Student’s t-test.
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(Fig. 2k). The brain levels of PGC-1a were the highest at E14.5
and postnatal day 0 (P0), and reduced markedly at adult stages
(Fig. 2l). Expression levels of MTCO1 and necdin were the
highest at E14.5 and decreased during postnatal development.
Necdin-null mice had lower levels of PGC-1a and MTCO1 than

wild-type mice throughout brain development. Interestingly, ATP
levels in the brain also decreased sharply during development
(o10% and o1% of the E14.5 level at P0 and 17 months,
respectively) and were significantly reduced in the brain of
necdin-deficient mice (Fig. 2m). We further examined the effect
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Figure 2 | Necdin deficiency reduces neuronal mitochondrial function and PGC-1a protein expression. (a) MTT-formazan deposits in primary cortical

neurons from wild-type (WT) and necdin-null (knockout; KO) mice were observed by differential interference contrast microscopy after incubation with

MTT for 90min. Scale bar, 50mm. (b) MTT-formazan levels in primary neurons and released LDH levels were measured after incubation with MTT for 4 h

(WT, n¼ 5; KO, n¼ 7). (c,d) Complex I (CI, arrowhead) in neuronal extracts of WT and KO mice were immunocaptured for NADH oxidizing activity (c).

The product signals were quantified by densitometry (d) (n¼4). (e) ATP levels in neurons and NPCs were measured by chemiluminescence assay (n¼4).

(f) CMXRos fluorescence levels were quantified by fluorescence-activated cell sorting analysis (n¼ 3). Mean fluorescence intensity: 116 (WT); 96 (KO).

(g) Expression of PGC-1a, necdin, nestin, MAP2 and actin in NPCs and neurons prepared from E14.5 mouse cortex was analysed by western blotting.

(h,i) PGC-1a expression in cortical neurons was analysed by immunoblotting (h) and quantified by densitometry (i) (n¼ 3). (j) PGC-1a and necdin

expression levels in the brain, gastrocnemius muscle, heart and liver prepared from WT and KO mice at E14.5 were analysed by western blotting.

(k) ATP levels in the tissues indicated were measured by chemiluminescence assay (n¼4). (l) Expression of PGC-1a, MTCO1 and necdin in the brain of

WTand KO mice at different ages was analysed by western blotting. (m) ATP levels in the brain at indicated ages were measured by chemiluminescence

assay (n¼ 5). mo, months old. Data represent means±s.e.m.; *Po0.05, **Po0.01, ***Po0.005, NS, not significant at PZ0.05; Student’s t-test.
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of necdin on mitochondrial degradation in cortical neurons using
carbonyl cyanide m-chlorophenyl hydrazone, a mitochondrial
uncoupler, as described previously19. There was no difference in
the expression levels of the autophagy marker LC3-II between
wild-type and necdin-null neurons treated with carbonyl cyanide
m-chlorophenyl hydrazone (Supplementary Fig. 2), suggesting
that necdin fails to affect mitochondrial degradation.

Necdin and PGC-1a are colocalized in neuronal nucleus. We
next investigated the distribution patterns of necdin and PGC-1a
in the neocortex by immunohistochemistry. In E14.5 mouse
forebrain, virtually all cortical neurons expressed both PGC-1a
and necdin (Fig. 3a). Most PGC-1a-expressing cells overlapped
with necdin-expressing cells in the cortical plate where
differentiated neurons are present. PGC-1a and necdin were
colocalized in the nucleus of primary cortical neurons as analysed
by confocal laser-scanning microscopy (Fig. 3b). Furthermore,
fluorescence microphotometry revealed that PGC-1a and
MTCO1 immunoreactivities were significantly reduced in the
neocortex of necdin-null mice (Fig. 3c–e). These reductions were
observed in the cortical plate but not in the ventricular/
subventricular zone, where undifferentiated neural precursors
are present. Western blot analysis revealed that expression of
PGC-1a and MTCO1 decreased by 46% and 77%, respectively, in
necdin-null forebrain extracts (Fig. 3f,g). Tissue ATP levels were
markedly reduced in the dorsal cortical area, which contains the
cortical plate, of necdin-null mice but not in the ventral area
containing undifferentiated cell populations (Fig. 3h). These data
suggest that necdin upregulates the protein levels of PGC-1a and
MTCO1 in the brain in vivo.

Necdin binds and stabilizes PGC-1a. We next examined the inter-
action between necdin and PGC-1a by co-immunoprecipitation
assay. Endogenous PGC-1a was coprecipitated with necdin in
forebrain extracts prepared from wild-type mice, but not from
necdin-null mice (Fig. 4a). Co-immunoprecipitation assay using
transfected HEK293A cells revealed that PGC-1a was coprecipi-
tated with necdin, which was conversely coprecipitated with
PGC-1a (Fig. 4b). Remarkably, PGC-1a expression levels in
transfected HEK293A cells were markedly increased by coexpres-
sion of necdin, suggesting that the PGC-1a protein expressed in
HEK293A cells is strongly stabilized in the presence of necdin.
Necdin bound to the N-terminal region of PGC-1a in immuno-
precipitation assay and in vitro pull-down assays (Fig. 4c–e). We
also analysed the subcellular localization of PGC-1a in transfected
HEK293A cells by immunocytochemistry (Supplementary Fig. 3).
Necdin was colocalized with PGC-1a in the nucleus of
co-transfected HEK293A cells, and coexpressed necdin significantly
increased nuclear PGC-1a levels. We then examined whether
forced expression of necdin and PGC-1a increases mitochondrial
biogenesis in HEK293A cells (Fig. 4f). Necdin failed to increase the
expression of MTCO1 but promoted PGC-1a-mediated MTCO1
expression (untransfected control, 1.0±0.2; necdin, 0.9±0.0;
PGC-1a, 2.5±0.5; necdinþ PGC-1a, 5.8±0.7; control versus
PGC-1a, Po0.05; PGC-1a versus necdinþPGC-1a, Po0.01, by
analysis of variance with Tukey–Kramer post hoc test, n¼ 3 per
each group).

We also examined whether necdin affects the stabilization of
PGC-1b, another PGC family member expressed in mammalian
cortical neurons20,21, using HEK293A cells expressing necdin and
Myc-tagged PGC-1b or Myc-tagged PGC-1a (positive control;
Supplementary Fig. 4). PGC-1b, like PGC-1a, was stabilized by
necdin, which promoted PGC-1b-mediated MTCO1 expression,
suggesting that necdin requires these PGC-1 family proteins for
promoting mitochondrial biogenesis.

Necdin inhibits ubiquitin-dependent degradation of PGC-1a.
To clarify whether necdin inhibits proteolytic degradation of
PGC-1a by the ubiquitin-proteasome pathway, we examined the
effects of the protein synthesis inhibitor cycloheximide (CHX)
and the proteasome inhibitor MG132 on PGC-1a expression
levels in transfected HEK293A cells. Necdin markedly increased
the PGC-1a level irrespective of the presence or absence of CHX
(Fig. 4g) or MG132 (Fig. 4h), indicating that necdin strongly
inhibits the degradation of PGC-1a in the proteasome. We then
examined the effect of necdin on ubiquitin-dependent degrada-
tion of PGC-1a using Rnf34, a PGC-1a E3 ubiquitin ligase22.
Rnf34 reduced the PGC-1a level, and necdin completely inhibited
the reduction (Fig. 4i). In addition, necdin strongly suppressed
Rnf34-mediated ubiquitination of PGC-1a (Fig. 4j). Necdin also
protected PGC-1a against ubiquitination mediated by Fbxw7,
another PGC-1a E3 ubiquitin ligase23 (Fig. 4k). These data
indicate that necdin stabilizes PGC-1a by inhibiting its
degradation in the ubiquitin-proteasomal system.

Necdin prevents oligomycin-induced neurodegeneration. To
examine whether necdin promotes mitochondrial biogenesis and
function, we transferred the mouse necdin gene into primary
cortical neurons using lentivirus vectors (LVs). LV-mediated
overexpression of necdin increased the PGC-1a levels by 49% and
91% in wild-type and necdin-null neurons, respectively, as
compared with the Emerald Green Fluorescent Protein (EmGFP)
control levels (Fig. 5a,b). Similarly, necdin overexpression
increased the MTCO1 levels 2.1- and 2.7-fold in wild-type and
necdin-null neurons, respectively (Fig. 5c). We also examined the
effects of necdin overexpression on mitochondrial activities in
primary cortical neurons. LV-mediated overexpression of necdin
increased MTT levels by 43 and 73% in wild-type and necdin-null
neurons, respectively (Fig. 5d). Similarly, necdin overexpression
increased the ATP levels by 55% and 63% in wild-type and
necdin-null neurons, respectively (Fig. 5e). In necdin-null
neurons, necdin increased the MTT and ATP levels to those
similar to wild-type control levels.

We then examined whether necdin-null cortical neurons
are susceptible to oligomycin, a mitochondrial ATP synthase
inhibitor. Oligomycin significantly increased apoptosis of necdin-
null neurons during the 4–24 h period (Fig. 5f), suggesting that
endogenous necdin suppresses oligomycin-induced apoptosis of
cortical neurons. In the LDH-based cytotoxicity assay, oligomycin
increased the LDH levels by B50% in wild-type neurons and
2.3-fold in necdin-null neurons under LV-EmGFP-infected
conditions (Fig. 5g), indicating that necdin-null neurons are
highly susceptible to oligomycin. Remarkably, LV-mediated
overexpression of necdin completely protected necdin-null
neurons against oligomycin-induced damage. These results
indicate that necdin promotes mitochondrial function to prevent
oligomycin-induced degeneration of cortical neurons.

Necdin prevents neurodegeneration in experimental PD models.
The mitochondrial complex I inhibitor MPPþ (1-methyl-4-
phenylpyridine) and its precursor MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine) selectively damage dopaminergic
neurons and are commonly used for experimental PD models18.
We first examined whether necdin prevents MPPþ -induced
degeneration of SH-SY5Y cells, a human neuroblastoma cell line
susceptible to MPPþ . LV-mediated overexpression of necdin
increased the expression of PGC-1a and MTCO1 in SH-SY5Y
cells as analysed by immunocytochemistry and western blotting
(Fig. 6a,b). Necdin markedly increased the expression levels of
PGC-1a 2.3- and 18.4-fold (compared with EmGFP controls) and
those of MTCO1 9.3- and 8.6-fold (compared with EmGFP
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controls) in SH-SY5Y cells in the absence and presence of MPPþ ,
respectively. Necdin increased the MTT levels 1.3- and 2.4-fold
(compared with EmGFP controls) in the absence and presence of
MPPþ , respectively (Fig. 6c). Similarly, necdin increased the ATP
levels in SH-SY5Y cells by 38% and 79% in the absence and
presence of MPPþ , respectively (Fig. 6d). In the cytotoxicity
assay, MPPþ significantly increased the LDH levels in
uninfected and LV-EmGFP-infected SH-SY5Y cells, whereas
forced expression of necdin reduced the LDH levels near MPPþ -
untreated levels (Fig. 6e). These results suggest that necdin
improves mitochondrial function to reduce MPPþ -induced
damage of SH-SY5Y cells.

We next investigated whether necdin prevents MPTP-induced
degeneration of dopaminergic neurons in the substantia nigra

(SN) in vivo using necdin-null mice in the C57BL/6J background,
which is susceptible to MPTP. Tyrosine hydroxylase-expressing
(THþ ) dopaminergic cells in the SN pars compacta (SNpc) were
quantified after MPTP treatment (Fig. 7a and Supplementary
Fig. 5a). There was no difference in the number of SNpc THþ

cells between wild-type and necdin-null mice without MPTP
treatment, whereas SNpc THþ cells in necdin-null mice were
significantly reduced in number when treated with MPTP
(Fig. 7b,c). The numbers of THþ dopaminergic neurons were
reduced throughout the SNpc area of necdin-null mice. This
suggests that endogenous necdin in SNpc dopaminergic neurons
is neuroprotective against MPTP toxicity.

Because necdin potentially prevents neuronal apoptosis
through suppressing the E2F1-Cdc2 and p53-Bax axes15,16, we
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also analysed the mRNA levels of necdin, E2F1, Cdc2 (Cdk1), p53
and Bax in the SN of wild-type and necdin-null mice treated
with MPTP (Supplementary Fig. 5b,c). However, there were no
significant differences in the expression levels of these mRNAs
between wild-type and necdin-null mice, suggesting that these
pathways are not involved in MPTP-induced degeneration of
nigral dopaminergic neurons seen in necdin-null mice.

To investigate whether necdin overexpression exerts protective
effects on dopaminergic neurons in vivo, we used adeno-
associated virus (AAV)-mediated gene delivery into the SN of
MPTP-based PD model mice24,25 (Fig. 8a and Supplementary
Fig. 6a). MPTP markedly reduced the number of THþ neurons
in the contralateral SNpc of mice injected with AAV expressing
GFP (AAV-GFP), whereas injection with AAV expressing human
necdin gene (AAV-NDN) fully protected THþ neurons in the
ipsilateral SNpc against MPTP-induced degeneration (Fig. 8b,c
and Supplementary Fig. 6b,c). We then analysed the expression
levels of PGC-1a and MTCO1 in the AAV-infected SN by
western blotting (Fig. 8d). AAV-NDN infection significantly
increased the necdin levels in the SN (relative necdin levels:
MPTP-untreated, contralateral, 1.0±0.3, ipsilateral, 2.0±0.4;
MPTP-treated, contralateral, 1.0±0.2, ipsilateral, 2.3±0.4,
Po0.05; Student’s t-test, n¼ 4 per each group). AAV-mediated
necdin overexpression increased the PGC-1a levels by 32% and
43% in the ipsilateral SN (compared with the contralateral SN
levels) of untreated and MPTP-treated mice, respectively
(Fig. 8e). Similarly, necdin increased the MTCO1 levels 1.6-
and 2.8-fold in the ipsilateral SN of untreated and MPTP-treated
mice, respectively (Fig. 8f). Furthermore, AAV-NDN-infected
mice exhibited higher behavioural performance in the pole test
than AAV-GFP-infected mice (Fig. 8g), indicating that necdin
improves motor coordination of MPTP-treated mice. These
results suggest that AAV-mediated necdin overexpression

suppresses MPTP-induced degeneration of SN neurons in vivo
by promoting PGC-1a-mediated mitochondrial biogenesis.

Necdin deficiency promotes neurodegeneration. We investi-
gated the neuroprotective effect of endogenous necdin on SN
dopaminergic neurons using necdin-null mice. We first analysed
the number of THþ neurons in the SNpc of wild-type and
necdin-null mice at their adult (17 weeks old) and late adult (60
weeks old) stages (Fig. 9a). Although there was no significant
difference in the number of SNpc THþ cells between wild-type
and necdin-null mice at 17 weeks of age, the number of SNpc
THþ cells was significantly reduced by 15% in necdin-null mice
at 60 weeks of age. We then analysed the expression levels of TH,
PGC-1a and MTCO1 in the SN by western blotting (Fig. 9b,c).
Similar to the results of THþ neuron counting, the expression
level of TH was decreased by 21% in the SNpc of necdin-null
mice 60 weeks old (Fig. 9d). Furthermore, the expression levels of
PGC-1a and MTCO1 in the SN decreased by 58% and 63%,
respectively, in necdin-null mice 60 weeks old, whereas there were
no differences in the SN levels of PGC-1a and MTCO1 between
wild-type and necdin-null mice 17 weeks old (Fig. 9e,f). On
the other hand, PGC-1a and MTCO1 levels in the cortex of
necdin-null mice decreased at 17 weeks of age by 66% and 78%,
respectively, and at 60 weeks of age by 37% and 67%, respectively.
These results suggest that endogenous necdin prevents
degeneration of nigral dopaminergic neurons by maintaining the
level of mitochondrial biosynthesis.

Discussion
The present study has shown that necdin upregulates the
expression of neuronal PGC-1a at the post-translational level.
In primary cortical neurons and developing brain tissues, the
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levels of necdin parallel with those of PGC-1a and the
mitochondrial DNA-encoded protein MTCO1. In addition,
PGC-1a and MTCO1 levels in the cerebral cortex in vivo are
much lower in necdin-null mice than in wild-type mice at adult
stages. These results suggest that necdin is an intrinsic positive
regulator of PGC-1a-mediated mitochondrial biogenesis. Virus
vector-mediated overexpression of necdin in primary cortical
neurons and nigral dopaminergic neurons in vivo upregulates the
expression of PGC-1a and MTCO1, indicating that endogenous
expression levels of those proteins are controllable by exogenous
necdin. Thus, necdin is likely to act as a molecular rheostat to
control neuronal mitochondrial biogenesis via PGC-1a. We
speculate that necdin and PGC-1a, both of which are expressed in
virtually all neurons, cooperate to maintain high mitochondrial
activities required for neuronal function and survival.

We have employed the mitochondrial oxidative phosphoryla-
tion inhibitors in combination with viral vector-mediated necdin
gene delivery to demonstrate the neuroprotective effects of
necdin. The combination of primary cortical neurons and the
ATP synthase inhibitor oligomycin showed that necdin-null
neurons are highly susceptible to oligomycin-induced apoptosis,
which is fully prevented by overexpression of necdin. To
investigate the effects of necdin on neurodegeneration in vivo,

we have selected nigral dopaminergic neurons, which are highly
susceptible to the mitochondrial complex I inhibitor MPTP, a
lipophilic protoxin metabolized in glial cells to MPPþ , which is
concentrated in dopaminergic neurons via the dopamine
transporter18. Before the analysis of in vivo PD model, we
confirmed the toxic effect of the active MPTP metabolite MPPþ

on SH-SY5Y neuroblastoma cells, a human catecholaminergic
cell line that exhibits apoptotic changes in response to
MPPþ (refs 26,27). Necdin-mediated protection of SH-SY5Y
cells against MPPþ toxicity led to further demonstrate
the neuroprotective effect of necdin on nigral dopaminergic
neurons in vivo against MPTP-induced degeneration. These
findings implicate that mitochondrial dysfunction-induced
neurodegeneration is preventable by enhancing neuronal
mitochondrial biogenesis through overexpression of necdin.

The present study clarified that necdin strongly stabilizes
PGC-1a by inhibiting its degradation in the ubiquitin-
proteasome system. Necdin interacted with PGC-1a via the
N-terminal region that contains the PEST (proline, glutamic acid,
serine, threonine) sequence, a domain critical for ubiquitin-
proteasomal degradation of PGC-1a in the nucleus28,29. Rnf34
(ref. 22), Fbxw7 (ref. 23) and RNF2 (ref. 30) act as PGC-1a E3
ubiquitin ligases. Necdin efficiently suppressed Rnf34- and
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Fbxw7-mediated ubiquitination of PGC-1a. We speculate that
necdin forms a stable nuclear complex with
PGC-1a in neurons and protects PGC-1a from ubiquitination
mediated by these E3 ubiquitin ligases. The N-terminal amino-
acid sequences of PGC-1a and PGC-1b are well conserved5,
and these PGC-1 family proteins increase mitochondrial
density in primary cortical neurons21. Thus, we infer that
necdin protects PGC-1a and PGC-1b against proteasomal
degradation to promote their effects on mitochondrial
biogenesis in mammalian neurons.

A genome-wide expression study revealed that PGC-1a-
regulated genes controlling cellular bioenergetics are under-
expressed in SN neurons affected by PD31. PGC-1a-null mutant
mice exhibit striatal lesions32, and their SN neurons are highly
susceptible to MPTP33. Moreover, PGC-1a overexpression
protects SN neurons against neurodegenerative insults34,35.
These findings imply that PGC-1a contributes to the
resistance of SN dopaminergic neurons against PD-associated
neurodegeneration. In contrast to the beneficial effects of
PGC-1a, sustained overexpression of PGC-1a in the SN
induces degeneration of dopaminergic neurons36,37. These
inconsistent results suggest that control of exogenous PGC-1a
expression levels is crucial for the neuroprotective effects. In
contrast, AAV-mediated overexpression of necdin increases

endogenous PGC-1a protein levels by inhibiting its ubiquitin-
proteasomal degradation at the post-translational level. Thus,
we speculate that the necdin gene delivery increases the PGC-1a
levels in dopaminergic neurons within a physiologically tolerable
extent that is sufficient for effective neuroprotection.

Recombinant AAV displays efficient transduction of SN
dopaminergic neurons in vivo and has been often used for
analysing the pathogenic mechanism of PD and developing
therapeutic strategies. For example, AAV-mediated overexpres-
sion of a-synuclein, a major structural component of Lewy bodies
seen in neurons undergoing degeneration in PD, induces PD-like
neurodegeneration38. AAV-mediated overexpression of Parkin, a
ubiquitin E3 ligase whose mutations cause recessively inherited
early-onset PD39, ameliorates a-synuclein-mediated or MPTP-
induced degeneration of dopaminergic neurons25,40. Moreover,
AAV-mediated delivery of PARIS (also known as ZNF746), a
substrate of Parkin, induces selective dopaminergic neuron loss,
which is prevented by AAV-mediated overexpression of Parkin34.
Gene therapy for PD using AAV-mediated gene delivery
has reached human clinical trials41. Thus, we propose that
AAV-mediated necdin gene delivery provides a novel strategy for
mitochondrial biogenesis-based neuroprotection in PD.

Human necdin gene (NDN) is located on chromosome
15q11–q12, and its expression is absent in neurons affected by
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Prader–Willi syndrome (PWS), a classic genomic imprinting-
associated neurodevelopmental disorder11,12. The present study
has shown that the brain levels of mitochondrial proteins and
mitochondrial activities are significantly reduced in necdin-null
neurons. These findings raise the possibility that necdin-null

neurons affected in PWS have low mitochondrial activities and
reduced ATP levels during neuronal development. Motor
proteins such as myosin, kinesin and dynein families
are powered by ATP hydrolysis and play key roles in
neuronal morphogenesis and network formation during brain
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Figure 8 | Necdin prevents MPTP-induced degeneration in vivo of dopaminergic neurons in experimental PD. (a) Schedule of AAV-mediated gene

transfer into SN neurons and MPTP treatment. (b) THþ dopaminergic neurons were analysed by immunohistochemistry (magnified in lower panels).

AAV expressing GFP (AAV-GFP) or human necdin (AAV-NDN) was microinjected into the SN of 13-week-old mice and treated without (–MPTP) or with

MPTP (þMPTP). CT, contralateral SN; IP, ipsilateral SN. Scale bars, 500 mm (top panel) and 50mm (second panel). (c) SN sections were immunostained

for TH, and THþ neurons in the SNpc were counted (12 sections per mouse; n¼ 3–5). (d) Expression of PGC-1a and MTCO1 in SN tissue extracts was

analysed by western blotting. (e,f) Expression levels of PGC-1a (e) and MTCO1 (f) were quantified by densitometry and normalized to b-tubulin (b-Tub)
levels (n¼4–5). Data represent means±s.e.m.; *Po0.05, **Po0.01, NS, not significant at PZ0.05; analysis of variance with Tukey–Kramer post hoc test.

(g) MPTP-induced behavioural changes of AAV-infected mice were assessed by the pole test. Success rates in three consecutive trials were presented

(n¼9–11). Data represent means; *Po0.05, **Po0.01, NS, not significant at PZ0.05; w2-test.
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development42. Mice carrying mutated paternal Ndn exhibit a
variety of neurodevelopmental abnormalities such as reduced
neuron number, impaired neuronal migration and abnormal
axon extension in the embryonic brain43–49. Although there is
limited information about the neuropathological abnormalities in
the PWS-affected brain, earlier studies using magnetic resonance
imaging have revealed multiple morphological abnormalities
such as ventriculomegaly, reduced sizes of specific areas and
differences in grey and white matter volumes in the brain of
patients with PWS50–52. Thus, we speculate that reduced
mitochondrial activities in necdin-null neurons contribute, at
least in part, to these neurodevelopmental abnormalities seen
in PWS.

Our findings suggest that necdin and PGC-1a cooperate
to promote mitochondrial biogenesis in various types of
neurons and prevent mitochondria-associated neurodegeneration.
Necdin-null mice exhibit low expression of the PGC-1a protein
in the brain, where the number of nigral dopaminergic neurons
is significantly reduced in late adulthood. Necdin is abundantly
expressed in spinal cord motor neurons10, and their mito-
chondrial dysfunction causes ALS53. PGC-1a is also suggested to
contribute to the pathogeneses of ALS54. Intriguingly, necdin
expression in spinal cord motor neurons of SOD1 G93A mutant
mice, an SOD1 gene mutant ALS model, increases significantly
at the early presymptomatic stage and decreases at the late
symptomatic stage55. We speculate that necdin expression
is upregulated for neuroprotection at the early stage of
neurodegeneration but declines at the advanced stage. A multi-
cohort transcriptional meta-analysis has revealed that
necdin expression is specifically diminished in major human
neurodegenerative diseases56. These findings raise the possibility
that necdin is involved in neuronal resistance or resilience against
neurodegenerative insults. Thus, gene therapy using virus vector-

mediated necdin gene delivery into specific neurons at risk will be
a promising avenue for prevention or therapeutic intervention of
neurodegenerative diseases. The present findings also warrant
further studies on the neuron-specific mechanism of mito-
chondrial biogenesis and its association with neurodegenerative
diseases.

Methods
Ndn knockout mice. Ndn knockout mice (Ndntm/Ky) were generated and
maintained as described46. Heterozygous male mice (Ndnþm/� p) (425
generations on the ICR background and 20 generations on the C57BL/6J
background) were crossed with wild-type (Ndnþm/þ p) female mice to obtain
Ndnþm/þ p and Ndn knockout (Ndnþm/-p) littermates. Genotypes of all mice
were analysed by PCR for mutated Ndn locus. C57BL/6J mice were used for
demonstrating MPTP-induced neurodegeneration and phenotypes of Ndn
knockout mice (13, 17 and 60 weeks of age). The study was approved by the
Animal Experiment Committee (Approval No. 24-04-0) and Recombinant
DNA Committee (Approval No. 3642) of Institute for Protein Research, Osaka
University, and were performed in accordance with national, institutional and
the ARRIVE guidelines.

Cell cultures. Primary cortical neurons were prepared from the forebrain of ICR
mice (Japan SLC) at E14.5 as described16. The cortex was dissected and incubated
in 0.5ml of Ca2þ /Mg2þ -free Hanks’ balanced salt solution with 0.05% trypsin for
5min at 37 �C. Tissues were dissociated with 10% fetal bovine serum (FBS) in
Dulbecco’s modified eagle medium (DMEM) and centrifuged at 200g for 3min.
Pellets were resuspended in Neurobasal medium (Life Technologies) supplemented
with 2mM L-glutamine, kanamycin/penicillin and B-27 supplement (1:50 dilution,
Life Technologies), plated at a density of B1� 105 cells per cm2 in culture dishes,
and incubated for 4 days in vitro (4 DIV) before analyses. For preparation of
primary NPCs, dissociated cortical cells were cultured as floating neurospheres in
DMEM/F12 (Life Technologies) supplemented with B-27 (1:50 dilution),
20 ngml� 1 epidermal growth factor (PeproTech) and 20 ngml� 1 basic fibroblast
growth factor (PeproTech) for 48 h at 37 �C under humidified 5% CO2 conditions.
HEK293A cells (Life Technologies) and SH-SY5Y cells (gift from Dr June Biedler,
Memorial Sloan-Kettering Cancer Center)26 were cultured in DMEM containing
10% FBS at 37 �C under humidified 5% CO2 conditions.
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Figure 9 | Necdin deficiency promotes degeneration of dopaminergic neurons in the SN of late adult mice. (a) THþ neurons in the SN of wild-type

(WT) and necdin-null (knockout; KO) mice at 17 and 60 weeks of age (wks) were analysed by immunohistochemistry. SN sections were immunostained for

TH, and the total number of THþ neurons were presented (15 sections per mouse; n¼ 3–6). (b,c) Expression of TH, PGC-1a and MTCO1 in SN tissue

extracts was analysed by western blotting. Durations of chemiluminescence detection were adjusted for quantification of each protein band in two

age groups, and representative blot images of mice at 17 (b) and 60 weeks (c) are presented separately. (d–f) Expression levels of TH (d), PGC-1a (e) and

MTCO1 (f) were quantified by densitometry of western blot signals and normalized to b-tubulin (b-Tub) levels (n¼4 each). Values relative to the WT-SN

level (¼ 1) in each age group are shown. Data represent means±s.e.m.; *Po0.05, ***Po0.005; NS, not significant at P40.05; Student’s t-test.
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DNA microarray. Total RNA was extracted from primary cortical neurons at
4 DIV, with phenol and guanidine thiocyanate mixture (TRI Reagent, Molecular
Research Center). Expression profiling was performed using CodeLink Mouse
Whole Genome Bioarray (Applied Microarrays) according to the manufacturer’s
protocol. Total RNA (1mg) was labelled and used for microarray. Array slides were
hybridized at 37 �C for 18 h, washed, dried and scanned with a microarray scanner
(GenePix 4400A, Molecular Devices). The signal intensities were quantified using
CodeLink Expression Analysis Software v5.0 (Applied Microarrays). Gene ontology
and clustering of microarray data were analysed using Microarray Data Analysis
Tool Ver3.2 (Filgen) and Cluster and TreeView programmes57.

Quantitative reverse transcription–PCR. Total RNA was extracted with the
guanidine thiocyanate mixture, and contaminating DNA was digested with RQ1
RNase-free DNase (Promega). For qRT–PCR, total RNA (2 mg) was reverse-
transcribed to cDNA using Transcriptor First Strand cDNA Synthesis Kit (Roche
Diagnostics). cDNA (10 ng) was used as templates for PCR mixture (LightCycler
FastStart DNA MasterPLUS SYBR Green I, Roche Diagnostics) in a real-time PCR
system (LightCycler 1.5, Roche Diagnostics). Primers for qRT–PCR are described
in Supplementary Table 2.

Mitochondrial DNA/mass measurements. Total genomic DNA was extracted
from cortical neurons at 4 DIV, and mitochondrial DNA content was quantified by
real-time PCR with LightCycler 1.5 using D-loop primers (forward, 50- GGTTCTT
ACTTCAGGGCCATCA-30; reverse, 50-GATTAGACCCGTTACCATCGAGAT-30).
Ribosomal protein P0 gene Rplp0 (R36B4) primers (forward, 50-GTGGGTAAT
CTCACTGGAAAG-30 ; reverse, 50-TTGTCCCAGACTAGCTATGG-30) were used
as a nuclear genome control for normalizing the D-loop level. For determination of
mitochondrial mass in neurons, cortical neurons at 4 DIV were incubated with
100 nM MitoTracker Green FM (Life Technologies) at 37 �C for 30min, and
analysed by flow cytometry with FACSCalibur (BD Biosciences).

Western blot analysis. Cells or tissues were homogenized with lysis buffer
containing 10mM Tris-HCl, pH 8.0, 150mM NaCl, 1mM EDTA, 1% IGEPAL
CA-630 (MP Biomedicals), 10% glycerol and protease inhibitor cocktails
(Complete, Roche Diagnostics). The protein concentration was determined by the
Bradford method (Bio-Rad). Proteins (2–10 mg per lane) were separated by 10%
SDS–PAGE and electroblotted to polyvinylidene difluoride membranes (Immobi-
lon, Merck Millipore). The membranes were incubated with primary antibodies
against the mitochondrial complex I–V subunits NDUFB8, SDHB, UQCRC2,
MTCO1 and ATP5A (total OXPHOS rodent WB antibody cocktail of antibodies,
ab110413, 1:500, Abcam), necdin (NC243, 1:3,000) (ref. 58),
b-tubulin (TUB2.1, 1:1,000, Sigma-Aldrich), PGC-1a (1:500, PGCAN), g-tubulin
(GTU-88, 1:1,000, Sigma-Aldrich), nestin (ST-1, 1:500) (ref. 59), MAP2 (1:5,000,
gift from Dr Michio Niinobe, Osaka University), actin (JLA20, 1:1,000, Sigma-
Aldrich), MTCO1 (ab14705, 1:200, Abcam), LC3 (8E10, 1:1,000, MBL), PCNA
(PC10, 1:1,000, Santa Cruz Biotechnologies), Myc (9E10, 1:10), V5 (R960-25,
1:5,000, Life Technologies), FLAG (M2, 1:500, Sigma-Aldrich) and GFP (JFP-J1,
1:200, Riken Cell Bank). Anti-PGC-1a antibody (PGCAN) was generated in rabbit
against a purified recombinant protein of maltose-binding protein (MBP) fused
to N-terminal PGC-1a (amino acids 1–120). Characterization of PGCAN is
depicted in Supplementary Fig. 1. After incubation with peroxidase-conjugated
IgGs (Cappel), proteins were detected by chemiluminescence method
(Chemiluminescence Reagent Plus, PerkinElmer). Signal intensities were quantified
with ImageJ 1.44 software. Images have been cropped for presentation. Full-size
images are presented in Supplementary Fig. 7.

MTT assay. Mitochondrial MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl
tetrazolium bromide) metabolic activity in primary cortical neurons and
differentiated SH-SY5Y cells was analysed by Cell Proliferation Kit I (MTT,
Roche Diagnostics) according to the manufacturer’s protocol. For detection
of intracellular MTT-formazan deposits, primary neurons were plated on a
35-mm imaging dish (m-Dish35mm, high, ibidi) precoated with poly-L-ornithine
(Sigma-Aldrich), and treated with 1.1mM MTT. Images were observed with a
differential interference contrast microscope (IX70, Olympus). For quantification
of MTT metabolic activity, cells were plated on 96-well dishes (BioLite 96-well
Multidish, Thermo Scientific) at 5� 104 cells, and treated with 1.1mM MTT for
4 h and lysed for 12 h in the lysis buffer containing 10% SDS. MTT-formazan
deposits were solubilized, measured by spectrophotometry as optical density (OD)
at wavelength 550/690 nm (OD 550/690).

LDH assay. LDH levels released from damaged cells were measured using
Cytotoxicity Detection kit (LDH, Roche Diagnostics) according to the
manufacturer’s protocol. Culture medium of differentiated neurons was
centrifuged at 200g for 5min. The supernatant was collected, incubated with
the LDH reaction mixture at room temperature for 30min, and measured by
spectrophotometry at a dual wavelength of 492/690 nm.

Complex I activity assay. Complex I activity was measured using an assay
kit based on the immunocapture with immobilized anti-Complex I antibodies
combined with in-gel activity measurement (dipstick assay, ab109720, Abcam).
Cell lysates (30 mg protein) were used for the assay according to the manufacturer’s
protocol. Complex I activity was measured by incubating with NADH and
nitrotetrazolium blue. Signals of resulting blue-purple precipitates on the dipstick
were analysed by densitometry and quantified using ImageJ 1.44 software.

ATP assay. ATP levels in cell lysates were analysed by luciferase
chemiluminescence-based assays (CellTiter-Glo Luminescent Cell Viability Assay
kit, Promega) according to the manufacturer’s protocols. Briefly, cell lysates were
mixed with CellTiter-Glo Reagent for 2min by shaking vigorously and settled for
10min. Chemiluminescence in reaction mixtures was measured with a lumin-
ometer (Lumat LB9501, Berthold).

Mitochondrial membrane potential assay. For determination of mitochondrial
membrane potential in neurons, cortical neurons at 4 DIV were incubated with
100 nM chloromethyl-X-rosamine (MitoTracker Red, Life Technologies) at 37 �C
for 30min, and analysed by flow cytometry with FACSCalibur (BD Biosciences).

Immunohistochemistry. Brain tissues of mouse embryos at E14.5 were fixed with
4% paraformaldehyde in phosphate buffer (pH 7.4) overnight and cryoprotected
by immersion in 20% sucrose overnight. Frozen 12-mm-thick tissue sections
were incubated with primary antibodies at 4 �C overnight and fluorescence
dye-conjugated secondary antibodies at room temperature for 60min. The primary
antibodies used are rabbit polyclonal antibody against PGC-1a (PGCAN, 1:500),
MAP2 (1:1,000), necdin (NC243, 1:500), guinea pig polyclonal antibody against
necdin (GN1, 1:500) (ref. 46) and mouse monoclonal antibodies against Sox2
(245610, 1:300, R and D Systems), bIII-tubulin (1:1,000, Promega) and MTCO1
(ab14705, 1:1,000). The secondary antibodies used are Alexa488-conjugated
anti-rabbit IgG (1:1,000, Molecular Probes), Alexa555-conjugated anti-guinea
pig IgG (1:1,000, Molecular Probes) and Alexa488-conjugated anti-mouse IgG
(1:1,000, Molecular Probes). Nuclear DNA was counterstained with 3.3 mM
Hoechst 33342 (Sigma-Aldrich). Immunofluorescence images were observed with a
fluorescence microscope (BX51, Olympus), taken by CCD (charge-coupled device)
camera system (DP73, Olympus), and processed using Adobe PhotoShop CS4
software. For immunostaining of adult mouse brain sections, free-floating sections
were incubated with a rabbit polyclonal antibody to TH (1:5,000, Calbiochem) in
PBS containing 0.05% Triton X-100 (PBST) and 2% blocking reagent (Block Ace,
Sumitomo Dainippon Pharma) at 4 �C for 48 h, with biotinylated anti-rabbit IgG
secondary antibody (1:500, Vector Laboratories) in PBST containing 2%
Block Ace for 2 h, and with avidin–biotin–peroxidase complex (ABC Elite,
Vector Laboratories) for 1 h. After reaction, sections were treated with 0.04%
diaminobenzidine in 50mM Tris-HCl (pH 7.6) and 0.02% hydrogen peroxide with
0.04% nickel chloride. Images were observed with a light microscope (BZ-9000,
Keyence) and processed using Adobe PhotoShop CS4 software.

Immunocytochemistry. Cells were fixed with 10% formalin solution at room
temperature for 20min and permeabilized with methanol at room temperature for
20min. Fixed cells were incubated with primary antibodies at 4 �C overnight, and
with secondary antibodies at room temperature for 90min. Primary antibodies
used for immunocytochemistry are rabbit polyclonal antibody against PGC-1a
(PGCAN, 1:500), guinea pig polyclonal antibody against necdin (GN1, 1:500),
mouse monoclonal antibody against Myc (9E10, 1:10) and rat monoclonal GFP
(JFP-J1, 1:200). The secondary antibodies Alexa488-conjugated anti-rabbit,
anti-mouse and anti-rat IgGs (1:1,000, Molecular Probes), and Alexa555- and
Alexa633-conjugated anti-guinea pig IgG (1:1,000, Molecular Probes) were used.
Nuclear DNA was counterstained with 3.3 mM Hoechst 33342 (Sigma-Aldrich).
Images were observed with a fluorescence microscope (BX51, Olympus) and
confocal laser-scanning microscope (FV1000 BX61, Olympus), taken by CCD
camera system (DP73, Olympus), and processed using Adobe PhotoShop CS4
software.

Fluorescence microphotometry. Cortical sections or transfected cells were
immunostained for PGC-1a and MTCO1. Signal intensities were quantified by
fluorescence microphotometry as described17. Fluorescence images were captured
with a CCD image sensor (CoolSNAP monochrome, Nippon Roper) as 12-bit
digital monochrome images. Fluorescence intensities of PGC-1a and MTCO1 were
analysed using fluorescence image analysis software (Lumina Vision, Mitani).

Co-immunoprecipitation assays. For detection of endogenous binding between
necdin and PGC-1a, lysates of mouse embryonic forebrain (1mg) were incubated
with guinea pig anti-necdin antibody (GN1, 1:100). Bound proteins were pelleted
with Protein A-Sepharose (nProtein A Sepharose 4 Fast Flow, GE Healthcare),
separated by 10% SDS–PAGE and detected by western blotting. For detection of
binding between necdin and PGC-1a in transfected cells, HEK293A cells were
transfected with combinations of expression vectors by the calcium phosphate
method and collected after 24 h. Cell lysates (200 mg) were incubated with
antibodies at 4 �C for 2 h, pelleted with Protein A-Sepharose, separated by 10%
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SDS–PAGE and detected by western blotting. PGC-1a expression vector was
constructed by subcloning cDNA encoding full-length mouse PGC-1a and
PGC-1b (gifts from Dr Akira Kakizuka, Kyoto University) into pcDNA3.1þ
and 6Myc-tagged pcDNA3.1þ . cDNAs encoding PGC-1a deletion mutants of
amino acids 1–200 (N-terminal), 201–400 (transcriptional repression), 401–550
(intermediate) and 551–797 (C-terminal) were generated using synthetic
oligonucleotide primers and subcloned into the expression vector.

Co-transfection assays. HEK293A cells were transfected with combinations of
expression vectors by the calcium phosphate method and collected after 24 h. For
CHX treatment, transfected HEK293A cells were incubated with DMEM/10%
FBS containing 500 mM CHX (Sigma-Aldrich) for 60min. HEK293A cells were
transfected with combinations of cDNAs and treated with 10 mM MG132 (Peptide
Institute) for 3 h before harvest. For PGC-1a ubiquitination assay, full-length
cDNAs encoding the PGC-1a E3 ubiquitin ligases Rnf34 (NM_030564) and Fbxw7
(NM_080428) were cloned from E14.5 mouse forebrain cDNAs used as a PCR
template, sequenced, attached with the V5-encoding sequence at the 30-end,
and subcloned into pcDNA3.1þ . Proteins were immunoprecipitated with
anti-PGC-1a antibody (PGCAN,1:50) and analysed by western blotting.

In vitro binding analysis. Deletion mutants of PGC-1a were subcloned into
pMAL-C2 vector to make MBP fusion proteins. MBP-fused mutant proteins were
affinity purified with amylose resin, and incubated with His-tagged necdin (200 ng)
at 4 �C for 30min in 0.5ml of the binding buffer containing 20mM Tris-HCl,
pH7.5, 200mM NaCl and 1mM EDTA as described16. After washing, bound
His-tagged necdin was eluted with 20mM maltose and detected by western blotting
with anti-necdin antibody. MBP fusion proteins were detected by Coomassie
Brilliant Blue staining.

Viral vectors. Recombinant LVs were produced in HEK293FT cells by trans-
fecting SIN vector plasmids and two or three helper plasmids using calcium
phosphate method as described59. Necdin and EmGFP cDNAs were subcloned into
pENTR1A entry vector (Life Technologies) to construct the destination vectors
CSII-EF1a-necdin-IRES-EmGFP and CSII-EF1a-IRES-EmGFP to make LV-Ndn
and LV-EmGFP, respectively. EmGFP (Life Technologies) was used for an
expression indicator and negative control for necdin overexpression. The viral
titre was measured by serial dilution on HEK293FT cells and determined as
GFP-positive cells by fluorescence-activated cell sorting analysis. For AAV
serotype-1 vector preparation, pAAV-MCS carrying cytomegalovirus promoter
(Stratagene) carrying human necdin cDNA (NM_002487) and humanized GFP
were used to make AAV-NDN and AAV-GFP, respectively, as described25. For
high-titre viral stocks, AAV vectors were purified by ultracentrifugation in a
density gradient with OptiPrep (Axis-Shield PoC AS), which was removed by
ultrafiltration using Centricon Plus-20 (10,000 molecular weight cut-off, Millipore).
Averaged titres of AAV-NDN and AAV-GFP were 1� 1012 genomes per ml.

Oligomycin-induced neurotoxicity assay. Primary cortical neurons were
cultured for 4 days and treated with 20 mgml� 1 oligomycin (Sigma-Aldrich). For
quantifying apoptotic neurons, cultures were stained with 3.3 mM Hoechst 33342
(Sigma-Aldrich) for 5min before fixation, and cortical neurons carrying condensed
or fragmented nuclei were counted. For LV infection, primary cortical cells
were infected with LVs at multiplicity of infection (m.o.i.) of 2, incubated in
DMEM/F12-based medium containing 20 ngml� 1 epidermal growth factor and
20 ngml� 1 basic fibroblast growth factor for 30min, and cultured for 4 days in
Neurobasal medium for neuronal differentiation. Mean viral infection efficiency
was more than 92%. For LDH release assay, neurons were treated with oligomycin
for 6 h.

MPPþ -induced cytotoxicity assay. LV vectors were infected into
undifferentiated SH-SY5Y cells (gift from Dr June Biedler, Memorial Sloan-
Kettering Cancer Center) at m.o.i. 2. Mean viral infection efficiency was 88%.
Infected cells were incubated in Neurobasal medium containing 10 mM retinoic
acid (Sigma-Aldrich) for 4 days before analyses. Infected SH-SY5Y cells were
treated with 1mM MPPþ (Sigma-Aldrich) for 48 h.

MPTP-induced neurodegeneration analysis. In necdin-null mice of C57BL/6J
background, 13-week-old mice were treated with MPTP-HCl (30mg per kg body
weight per day, Sigma-Aldrich) dissolved in saline for 5 consecutive days. Control
mice without MPTP treatment were injected with saline. AAV vectors were
stereotaxically injected into the SN of 13-week-old male C57BL/6J mice (Japan
SLC) as described25. AAV-infected mice were injected intraperitoneally 42 days
after AAV infection, with MPTP for 5 consecutive days. Control mice without
MPTP treatment were injected with saline. MPTP-treated mice were killed 21 days
after the last injection of MPTP. MPTP was handled in accordance with the
guidelines60. For quantifying TH-expressing (THþ ) cells, coronal 20-mm-thick
brain sections were cut serially using a cryostat (CM1900, Leica Microsystems).
Sections were stained with anti-TH antibody and counterstained with Nissl.
TH- and Nissl-double-positive neurons in the SNpc were analysed by unbiased

stereological counting method25. Cells having optimally visualized nuclei and
nucleoli were counted to avoid double counting. THþ cells in every fourth 20-mm
section were counted so that 15 sections (total 60 sections for B1.2mm) cover the
entire SNpc extent. For western blotting, brain blocks including the entire SN were
cut coronally at 2-mm thickness. A ventral part of the midbrain including the SN
(B1.2mm from the ventral end) was dissected horizontally, and immediately
frozen in liquid nitrogen for tissue extraction. Pole test was performed 3 days
before western blot analysis according to the method described61 at 20:00 . Mice
were placed on the top of a 48-cm-long 1-cm-diameter wooden rod. Mice
performed three trials with 30-s intervals, and success rates to reach the floor
within 80 s were measured.

Statistics. Statistical significance was tested using an unpaired Student’s t-test,
one-way analysis of variance followed by Tukey–Kramer post hoc test, or w2-test.
A significance of Po0.05 was required for rejection of the null hypothesis.
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