Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A neutral diphosphate mimic crosslinks the active site of human O-GlcNAc transferase

Abstract

Glycosyltransferases (Gtfs) catalyze the formation of a diverse array of glycoconjugates. Small-molecule inhibitors to manipulate Gtf activity in cells have long been sought as tools for understanding Gtf function. Success has been limited because of challenges in designing inhibitors that mimic the negatively charged diphosphate substrates. Here we report the mechanism of action of a small molecule that inhibits O-linked N-acetylglucosamine transferase (OGT), an essential human enzyme that modulates cell signaling pathways by catalyzing a unique intracellular post-translational modification, β-O-GlcNAcylation. The molecule contains a five-heteroatom dicarbamate core that functions as a neutral diphosphate mimic. One dicarbamate carbonyl reacts with an essential active site lysine that anchors the diphosphate of the nucleotide-sugar substrate. A nearby cysteine then reacts with the lysine adduct to form a carbonyl crosslink in the OGT active site. Though this unprecedented double-displacement mechanism reflects the unique architecture of the OGT active site, related dicarbamate scaffolds may inhibit other enzymes that bind nucleotide-containing substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inactivation of OGT by BZX compounds.
Figure 2: Proposed double-displacement scheme for the reaction of 2 with OGT. A simplified double-displacement scheme to form a carbonyl crosslink is proposed.
Figure 3: Active site comparison of crosslinked and uncrosslinked OGT.
Figure 4: The dicarbamate docks into the same site as the diphosphate.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Varki, A. et al. Essentials of Glycobiology 2nd edn. (Cold Spring Harbor Laboratory Press, 2009).

  2. Kiessling, L.L. & Splain, R.A. Chemical approaches to glycobiology. Annu. Rev. Biochem. 79, 619–653 (2010).

    Article  CAS  Google Scholar 

  3. Wagner, G.K. & Pesnot, T. Glycosyltransferases and their assays. ChemBioChem 11, 1939–1949 (2010).

    Article  CAS  Google Scholar 

  4. Brown, J.R., Crawford, B.E. & Esko, J.D. Glycan antagonists and inhibitors: a fount for drug discovery. Crit. Rev. Biochem. Mol. Biol. 42, 481–515 (2007).

    Article  CAS  Google Scholar 

  5. Pesnot, T., Jorgensen, R., Palcic, M.M. & Wagner, G.K. Structural and mechanistic basis for a new mode of glycosyltransferase inhibition. Nat. Chem. Biol. 6, 321–323 (2010).

    Article  CAS  Google Scholar 

  6. Frantom, P.A., Coward, J.K. & Blanchard, J.S. UDP-(5F)-GlcNAc acts as a slow-binding inhibitor of MshA, a retaining glycosyltransferase. J. Am. Chem. Soc. 132, 6626–6627 (2010).

    Article  CAS  Google Scholar 

  7. Lairson, L.L., Henrissat, B., Davies, G.J. & Withers, S.G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    Article  CAS  Google Scholar 

  8. Trunkfield, A.E., Gurcha, S.S., Besra, G.S. & Bugg, T.D. Inhibition of Escherichia coli glycosyltransferase MurG and Mycobacterium tuberculosis Gal transferase by uridine-linked transition state mimics. Bioorg. Med. Chem. 18, 2651–2663 (2010).

    Article  CAS  Google Scholar 

  9. Izumi, M., Yuasa, H. & Hashimoto, H. Bisubstrate analogues as glycosyltransferase inhibitors. Curr. Top. Med. Chem. 9, 87–105 (2009).

    Article  CAS  Google Scholar 

  10. Skropeta, D., Schworer, R., Haag, T. & Schmidt, R.R. Asymmetric synthesis and affinity of potent sialyltransferase inhibitors based on transition-state analogues. Glycoconj. J. 21, 205–219 (2004).

    Article  CAS  Google Scholar 

  11. Wang, R. et al. A search for pyrophosphate mimics for the development of substrates and inhibitors of glycosyltransferases. Bioorg. Med. Chem. 5, 661–672 (1997).

    Article  CAS  Google Scholar 

  12. Helm, J.S., Hu, Y., Chen, L., Gross, B. & Walker, S. Identification of active-site inhibitors of MurG using a generalizable, high-throughput glycosyltransferase screen. J. Am. Chem. Soc. 125, 11168–11169 (2003).

    Article  CAS  Google Scholar 

  13. Hang, H.C. et al. Small molecule inhibitors of mucin-type O-linked glycosylation from a uridine-based library. Chem. Biol. 11, 337–345 (2004).

    Article  CAS  Google Scholar 

  14. Gloster, T.M. et al. Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat. Chem. Biol. 7, 174–181 (2011).

    Article  CAS  Google Scholar 

  15. Hart, G.W., Housley, M.P. & Slawson, C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007).

    Article  CAS  Google Scholar 

  16. Love, D.C. & Hanover, J.A. The hexosamine signaling pathway: deciphering the “O-GlcNAc code”. Sci. STKE 2005, re13 (2005).

    Google Scholar 

  17. Boyce, M. et al. Metabolic cross-talk allows labeling of O-linked β-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway. Proc. Natl. Acad. Sci. USA 108, 3141–3146 (2011).

    Article  CAS  Google Scholar 

  18. Dong, D.L. & Hart, G.W. Purification and characterization of an O-GlcNAc selective N-acetyl-beta-D-glucosaminidase from rat spleen cytosol. J. Biol. Chem. 269, 19321–19330 (1994).

    CAS  Google Scholar 

  19. Macauley, M.S. & Vocadlo, D.J. Increasing O-GlcNAc levels: an overview of small-molecule inhibitors of O-GlcNAcase. Biochim. Biophys. Acta 1800, 107–121 (2010).

    Article  CAS  Google Scholar 

  20. Hanover, J.A., Krause, M.W. & Love, D.C. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim. Biophys. Acta 1800, 80–95 (2010).

    Article  CAS  Google Scholar 

  21. Zeidan, Q. & Hart, G.W. The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J. Cell Sci. 123, 13–22 (2010).

    Article  CAS  Google Scholar 

  22. Hart, G.W., Slawson, C., Ramirez-Correa, G. & Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80, 825–858 (2011).

    Article  CAS  Google Scholar 

  23. Hu, P., Shimoji, S. & Hart, G.W. Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. FEBS Lett. 584, 2526–2538 (2010).

    Article  CAS  Google Scholar 

  24. Slawson, C., Copeland, R.J. & Hart, G.W. O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem. Sci. 35, 547–555 (2010).

    Article  CAS  Google Scholar 

  25. Yang, X. et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451, 964–969 (2008).

    Article  CAS  Google Scholar 

  26. Hu, Y. et al. Identification of selective inhibitors for the glycosyltransferase MurG via high-throughput screening. Chem. Biol. 11, 703–711 (2004).

    Article  CAS  Google Scholar 

  27. Gross, B.J., Kraybill, B.C. & Walker, S. Discovery of O-GlcNAc transferase inhibitors. J. Am. Chem. Soc. 127, 14588–14589 (2005).

    Article  CAS  Google Scholar 

  28. Alexander, J.P. & Cravatt, B.F. Mechanism of carbamate inactivation of FAAH: implications for the design of covalent inhibitors and in vivo functional probes for enzymes. Chem. Biol. 12, 1179–1187 (2005).

    Article  CAS  Google Scholar 

  29. Kreppel, L.K. & Hart, G.W. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J. Biol. Chem. 274, 32015–32022 (1999).

    Article  CAS  Google Scholar 

  30. Ten Hagen, K.G. et al. Cloning and expression of a novel, tissue specifically expressed member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase family. J. Biol. Chem. 273, 27749–27754 (1998).

    Article  CAS  Google Scholar 

  31. Lazarus, M.B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564–567 (2011).

    Article  CAS  Google Scholar 

  32. Friesner, R.A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).

    Article  CAS  Google Scholar 

  33. Halgren, T.A. et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759 (2004).

    Article  CAS  Google Scholar 

  34. Friesner, R.A. et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49, 6177–6196 (2006).

    Article  CAS  Google Scholar 

  35. Konrad, R.J. et al. Alloxan is an inhibitor of the enzyme O-linked N-acetylglucosamine transferase. Biochem. Biophys. Res. Commun. 293, 207–212 (2002).

    Article  CAS  Google Scholar 

  36. Hajduch, J. et al. A convenient synthesis of the C-1-phosphonate analogue of UDP-GlcNAc and its evaluation as an inhibitor of O-linked GlcNAc transferase (OGT). Carbohydr. Res. 343, 189–195 (2008).

    Article  CAS  Google Scholar 

  37. Vocadlo, D.J. & Davies, G.J. Mechanistic insights into glycosidase chemistry. Curr. Opin. Chem. Biol. 12, 539–555 (2008).

    Article  CAS  Google Scholar 

  38. Gloster, T.M. & Davies, G.J. Glycosidase inhibition: assessing mimicry of the transition state. Org. Biomol. Chem. 8, 305–320 (2010).

    Article  CAS  Google Scholar 

  39. Rempel, B.P. & Withers, S.G. Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiology 18, 570–586 (2008).

    Article  CAS  Google Scholar 

  40. Dorfmueller, H.C. et al. Cell-penetrant, nanomolar O-GlcNAcase inhibitors selective against lysosomal hexosaminidases. Chem. Biol. 17, 1250–1255 (2010).

    Article  CAS  Google Scholar 

  41. Kim, E.J., Perreira, M., Thomas, C.J. & Hanover, J.A. An O-GlcNAcase-specific inhibitor and substrate engineered by the extension of the N-acetyl moiety. J. Am. Chem. Soc. 128, 4234–4235 (2006).

    Article  CAS  Google Scholar 

  42. Vijayalakshmi, J., Meyer, E.F. Jr., Kam, C.M. & Powers, J.C. Structural study of porcine pancreatic elastase complexed with 7-amino-3-(2-bromoethoxy)-4-chloroisocoumarin as a nonreactivatable doubly covalent enzyme-inhibitor complex. Biochemistry 30, 2175–2183 (1991).

    Article  CAS  Google Scholar 

  43. Drawz, S.M. & Bonomo, R.A. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev. 23, 160–201 (2010).

    Article  CAS  Google Scholar 

  44. Martinez-Fleites, C. et al. Structure of an O-GlcNAc transferase homolog provides insight into intracellular glycosylation. Nat. Struct. Mol. Biol. 15, 764–765 (2008).

    Article  CAS  Google Scholar 

  45. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  46. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  47. Bricogne, G. et al. BUSTER Version 2.9 (Global Phasing Ltd., 2010).

  48. DeLano, W.L. The PyMOL GMolecular Graphics System. (Delano Scientific, 2002).

Download references

Acknowledgements

We thank J. Brugge (Harvard Medical School) for the MCF-10A ErbB2 cells, L. Tabak (US National Institutes of Health, NIH) for ppGalNAcT2 protein, T. Lupoli (Harvard University) for MurG protein, C. Walsh, N. Gray (Harvard Medical School), E. Jacobson and D. Ford (Harvard University) for helpful discussions and A. Saghatelian (Harvard University) for critical reading of the manuscript. LC/MS data was acquired on an Agilent 6520 Q-TOF spectrophotometer supported by the Taplin Funds for Discovery Program (S. Walker). This work was supported in part by the NIH (GM076710) and the Harvard Biomedical Accelerator Fund.

Author information

Authors and Affiliations

Authors

Contributions

S.W. oversaw all aspects of the experiments and manuscript preparation. J.J. carried out all experiments except those involving X-ray crystallography and molecular docking. M.B.L. obtained OGT-inhibitor crystals, acquired data and solved the structure of the crosslinked protein. L.P. conducted molecular docking experiments. P.S. guided refinement of the X-ray crystal structure and molecular docking. J.J. and S.W. wrote the manuscript, and all coauthors participated in figure preparation and editing.

Corresponding author

Correspondence to Suzanne Walker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, J., Lazarus, M., Pasquina, L. et al. A neutral diphosphate mimic crosslinks the active site of human O-GlcNAc transferase. Nat Chem Biol 8, 72–77 (2012). https://doi.org/10.1038/nchembio.711

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.711

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing