Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A computationally engineered RAS rheostat reveals RAS–ERK signaling dynamics

Abstract

Synthetic protein switches controlled with user-defined inputs are powerful tools for studying and controlling dynamic cellular processes. To date, these approaches have relied primarily on intermolecular regulation. Here we report a computationally guided framework for engineering intramolecular regulation of protein function. We utilize this framework to develop chemically inducible activator of RAS (CIAR), a single-component RAS rheostat that directly activates endogenous RAS in response to a small molecule. Using CIAR, we show that direct RAS activation elicits markedly different RAS–ERK signaling dynamics from growth factor stimulation, and that these dynamics differ among cell types. We also found that the clinically approved RAF inhibitor vemurafenib potently primes cells to respond to direct wild-type RAS activation. These results demonstrate the utility of CIAR for quantitatively interrogating RAS signaling. Finally, we demonstrate the general utility of our approach in design of intramolecularly regulated protein tools by applying it to the Rho family of guanine nucleotide exchange factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for engineering CIAR.
Figure 2: Computational framework for designing CIAR.
Figure 3: CIAR functions as a RAS rheostat.
Figure 4: Interrogation of RAF regulation with CIAR.
Figure 5: Phosphoproteomic comparison of direct RAS activation and EGF stimulation in CIAR-293 cells.
Figure 6: Computational design of inducible Rho family GEFs.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Buskirk, A.R. & Liu, D.R. Creating small-molecule-dependent switches to modulate biological functions. Chem. Biol. 12, 151–161 (2005).

    CAS  PubMed  Google Scholar 

  2. Inoue, T., Heo, W.D., Grimley, J.S., Wandless, T.J. & Meyer, T. An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat. Methods 2, 415–418 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou, X.X., Chung, H.K., Lam, A.J. & Lin, M.Z. Optical control of protein activity by fluorescent protein domains. Science 338, 810–814 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Karginov, A.V., Ding, F., Kota, P., Dokholyan, N.V. & Hahn, K.M. Engineered allosteric activation of kinases in living cells. Nat. Biotechnol. 28, 743–747 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, Y.I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Goreshnik, I. & Maly, D.J. A small molecule-regulated guanine nucleotide exchange factor. J. Am. Chem. Soc. 132, 938–940 (2010).

    CAS  PubMed  Google Scholar 

  7. Toettcher, J.E., Gong, D., Lim, W.A. & Weiner, O.D. Light-based feedback for controlling intracellular signaling dynamics. Nat. Methods 8, 837–839 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Suh, B.C., Inoue, T., Meyer, T. & Hille, B. Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314, 1454–1457 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Komatsu, T. et al. Organelle-specific, rapid induction of molecular activities and membrane tethering. Nat. Methods 7, 206–208 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Toettcher, J.E., Weiner, O.D. & Lim, W.A. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155, 1422–1434 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ambroggio, X.I. & Kuhlman, B. Design of protein conformational switches. Curr. Opin. Struct. Biol. 16, 525–530 (2006).

    CAS  PubMed  Google Scholar 

  12. Karnoub, A.E. & Weinberg, R.A. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9, 517–531 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Boriack-Sjodin, P.A., Margarit, S.M., Bar-Sagi, D. & Kuriyan, J. The structural basis of the activation of Ras by Sos. Nature 394, 337–343 (1998).

    CAS  PubMed  Google Scholar 

  14. Shoemaker, A.R. et al. A small-molecule inhibitor of Bcl-XL potentiates the activity of cytotoxic drugs in vitro and in vivo. Cancer Res. 66, 8731–8739 (2006).

    CAS  PubMed  Google Scholar 

  15. Huang, P.-S. et al. RosettaRemodel: a generalized framework for flexible backbone protein design. PLoS One 6, e24109 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Roose, J.P., Mollenauer, M., Ho, M., Kurosaki, T. & Weiss, A. Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol. Cell. Biol. 27, 2732–2745 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Santos, S.D.M., Verveer, P.J. & Bastiaens, P.I.H. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat. Cell Biol. 9, 324–330 (2007).

    CAS  PubMed  Google Scholar 

  18. Olsen, J.V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    CAS  PubMed  Google Scholar 

  19. Tarcic, G. et al. EGR1 and the ERK-ERF axis drive mammary cell migration in response to EGF. FASEB J. 26, 1582–1592 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dougherty, M.K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    CAS  PubMed  Google Scholar 

  21. Dhillon, A.S. et al. Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259. Mol. Cell. Biol. 22, 3237–3246 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zimmermann, S. & Moelling, K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286, 1741–1744 (1999).

    CAS  PubMed  Google Scholar 

  23. Marquette, A., André, J., Bagot, M., Bensussan, A. & Dumaz, N. ERK and PDE4 cooperate to induce RAF isoform switching in melanoma. Nat. Struct. Mol. Biol. 18, 584–591 (2011).

    CAS  PubMed  Google Scholar 

  24. McPhillips, F. et al. Raf-1 is the predominant Raf isoform that mediates growth factor-stimulated growth in ovarian cancer cells. Carcinogenesis 27, 729–739 (2006).

    CAS  PubMed  Google Scholar 

  25. Wixler, V., Smola, U., Schuler, M. & Rapp, U. Differential regulation of Raf isozymes by growth versus differentiation inducing factors in PC12 pheochromocytoma cells. FEBS Lett. 385, 131–137 (1996).

    CAS  PubMed  Google Scholar 

  26. Lavoie, H. & Therrien, M. Regulation of RAF protein kinases in ERK signalling. Nat. Rev. Mol. Cell Biol. 16, 281–298 (2015).

    CAS  PubMed  Google Scholar 

  27. Kubicek, M. et al. Dephosphorylation of Ser-259 regulates Raf-1 membrane association. J. Biol. Chem. 277, 7913–7919 (2002).

    CAS  PubMed  Google Scholar 

  28. Mason, C.S. et al. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 18, 2137–2148 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pandit, B. et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat. Genet. 39, 1007–1012 (2007).

    CAS  PubMed  Google Scholar 

  30. Kolch, W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. 6, 827–837 (2005).

    CAS  PubMed  Google Scholar 

  31. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sosman, J.A. et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366, 707–714 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Oberholzer, P.A. et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J. Clin. Oncol. 30, 316–321 (2012).

    CAS  PubMed  Google Scholar 

  34. Poulikakos, P.I., Zhang, C., Bollag, G., Shokat, K.M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    CAS  PubMed  Google Scholar 

  36. Kosako, H. et al. Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat. Struct. Mol. Biol. 16, 1026–1035 (2009).

    CAS  PubMed  Google Scholar 

  37. Vomastek, T. et al. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction. Mol. Cell. Biol. 28, 6954–6966 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Marklund, U., Brattsand, G., Shingler, V. & Gullberg, M. Serine 25 of oncoprotein 18 is a major cytosolic target for the mitogen-activated protein kinase. J. Biol. Chem. 268, 15039–15047 (1993).

    CAS  PubMed  Google Scholar 

  39. Courcelles, M. et al. Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions. Mol. Syst. Biol. 9, 669 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dueber, J.E., Yeh, B.J., Chak, K. & Lim, W.A. Reprogramming control of an allosteric signaling switch through modular recombination. Science 301, 1904–1908 (2003).

    CAS  PubMed  Google Scholar 

  41. Dueber, J.E., Mirsky, E.A. & Lim, W.A. Engineering synthetic signaling proteins with ultrasensitive input/output control. Nat. Biotechnol. 25, 660–662 (2007).

    CAS  PubMed  Google Scholar 

  42. Yeh, B.J., Rutigliano, R.J., Deb, A., Bar-Sagi, D. & Lim, W.A. Rewiring cellular morphology pathways with synthetic guanine nucleotide exchange factors. Nature 447, 596–600 (2007).

    CAS  PubMed  Google Scholar 

  43. Bos, J.L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877 (2007).

    CAS  PubMed  Google Scholar 

  44. Prior, I.A., Lewis, P.D. & Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 72, 2457–2467 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ory, S., Zhou, M., Conrads, T.P., Veenstra, T.D. & Morrison, D.K. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr. Biol. 13, 1356–1364 (2003).

    CAS  PubMed  Google Scholar 

  46. Zhang, B.H. et al. Serum- and glucocorticoid-inducible kinase SGK phosphorylates and negatively regulates B-Raf. J. Biol. Chem. 276, 31620–31626 (2001).

    CAS  PubMed  Google Scholar 

  47. Haling, J.R. et al. Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling. Cancer Cell 26, 402–413 (2014).

    CAS  PubMed  Google Scholar 

  48. McKay, M.M., Ritt, D.A. & Morrison, D.K. RAF inhibitor-induced KSR1/B-RAF binding and its effects on ERK cascade signaling. Curr. Biol. 21, 563–568 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Heidorn, S.J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Callahan, M.K. et al. Paradoxical activation of T cells via augmented ERK signaling mediated by a RAF inhibitor. Cancer Immunol. Res. 2, 70–79 (2014).

    CAS  PubMed  Google Scholar 

  51. Freedman, T.S. et al. Differences in flexibility underlie functional differences in the Ras activators Son of Sevenless and Ras guanine nucleotide releasing factor 1. Structure 17, 41–53 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Campeau, E. et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS One 4, e6529 (2009).

    PubMed  PubMed Central  Google Scholar 

  53. Debnath, J., Muthuswamy, S.K. & Brugge, J.S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    CAS  PubMed  Google Scholar 

  54. Tiscornia, G., Singer, O. & Verma, I.M. Production and purification of lentiviral vectors. Nat. Protoc. 1, 241–245 (2006).

    CAS  PubMed  Google Scholar 

  55. Eng, J.K., Jahan, T.A. & Hoopmann, M.R. Comet: an open-source MS/MS sequence database search tool. Proteomics 13, 22–24 (2013).

    CAS  PubMed  Google Scholar 

  56. Deutsch, E.W. et al. A guided tour of the Trans-Proteomic Pipeline. Proteomics 10, 1150–1159 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pedrioli, P.G.A. et al. Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat. Methods 3, 533–539 (2006).

    CAS  PubMed  Google Scholar 

  58. Wang, J., Duncan, D., Shi, Z. & Zhang, B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 41, W77–W83 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

Download references

Acknowledgements

E. Campeau (Zenith Epigenetics) provided the pLenti_CMV_GFP_Puro (658-5) plasmid, and M. Meyerson (Dana-Farber Cancer Institute) provided pBABEpuro-CRAF. This research was supported by US National Institutes of Health (NIH) grants R01GM086858 (D.J.M.), R01CA126792 (J.D.) and F30CA189793 (J.C.R.), a National Science Foundation CAREER award CHE-0954242 (D.J.M.), the US Department of Defense Breast Cancer Research Program (BCRP) (W81XWH-11-1-0130) and the Howard Hughes Medical Institute (P.-S.H. and D.B.).

Author information

Authors and Affiliations

Authors

Contributions

J.C.R. and D.J.M. conceived the project and designed the study. J.C.R. and P.-S.H. developed computational methods and performed the design calculations with guidance from D.B. J.C.R., I.G., and D.C.-B. performed biochemical experiments. J.C.R., J.Y., and M.S.D. performed cell biology experiments under the supervision of J.D. and D.J.M. J.C.R., A.M.L., M.S.D., and B.M.T. generated reagents and cell lines. J.C.R. generated samples for mass spectrometry experiments. N.D.C. prepared peptide samples, performed MS analyses, and processed MS data under the supervision of A.W.-Y. J.C.R., D.J.M., N.D.C., and A.W.-Y. analyzed the MS data. J.C.R., P.-S.H., and D.J.M. wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Dustin J Maly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–32. (PDF 33198 kb)

Supplementary Data Set 1

30 min stimulation phosphoproteomic data set. (XLSX 344 kb)

Supplementary Data Set 2

Time-course phosphoproteomic data set. (XLSX 190 kb)

Supplementary Data Set 3

Class I and class II phosphopeptides. (XLSX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rose, J., Huang, PS., Camp, N. et al. A computationally engineered RAS rheostat reveals RAS–ERK signaling dynamics. Nat Chem Biol 13, 119–126 (2017). https://doi.org/10.1038/nchembio.2244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2244

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer