Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A metallo-DNA nanowire with uninterrupted one-dimensional silver array

Abstract

The double-helix structure of DNA, in which complementary strands reversibly hybridize to each other, not only explains how genetic information is stored and replicated, but also has proved very attractive for the development of nanomaterials. The discovery of metal-mediated base pairs has prompted the generation of short metal–DNA hybrid duplexes by a bottom-up approach. Here we describe a metallo-DNA nanowire—whose structure was solved by high-resolution X-ray crystallography—that consists of dodecamer duplexes held together by four different metal-mediated base pairs (the previously observed C–Ag–C, as well as G–Ag–G, G–Ag–C and T–Ag–T) and linked to each other through G overhangs involved in interduplex G–Ag–G. The resulting hybrid nanowires are 2 nm wide with a length of the order of micrometres to millimetres, and hold the silver ions in uninterrupted one-dimensional arrays along the DNA helical axis. The hybrid nanowires are further assembled into three-dimensional lattices by interactions between adenine residues, fully bulged out of the double helix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the silver–DNA hybrid nanowire.
Figure 2: Crystal of the silver–DNA hybrid nanowire and its packing.
Figure 3: Six groups of three contiguous silver-mediated base pairs observed in the DNA nanowire.
Figure 4: Top view of the silver–DNA hybrid nanowire.

Similar content being viewed by others

References

  1. Watson, J. D. & Crick, F. H. C. A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    CAS  PubMed  Google Scholar 

  2. Neidle, S. Principles of Nucleic Acid Structure (Academic, 2007).

    Google Scholar 

  3. Sunami, T. et al. Crystal structure of d(GCGAAAGCT) containing a parallel-stranded duplex with homo base pairs and an anti-parallel duplex with Watson–Crick base pairs. Nucleic Acids Res. 30, 5253–5260 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kondo, J., Adachi, W., Umeda, S., Sunami, T. & Takénaka, A. Crystal structures of a DNA octaplex with I-motif of G-quartets and its splitting into two quadruplexes suggest a folding mechanism of eight tandem repeats. Nucleic Acids Res. 32, 2541–2549 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Seeman, N. C. Structural DNA Nanotechnology (Cambridge Univ. Press, 2016).

    Google Scholar 

  6. Gao, K. & Orgel, L. E. Nucleic acid duplexes incorporating a dissociable covalent base pair. Proc. Natl Acad. Sci. USA 96, 14837–14842 (1999).

    CAS  PubMed  Google Scholar 

  7. Li, H.-Y., Q. Y.-L., Moyroud, E. & Kishi, Y. Synthesis of DNA oligomers possessing a covalently cross-linked Watson–Crick base pair model. Angew. Chem. Int. Ed. 40, 1471–1475 (2001).

  8. Hatano, A., Makita, S. & Kirihara, M. Synthesis and characterization of a DNA analogue stabilized by mercapto C-nucleoside induced disulfide bonding. Bioorg. Med. Chem. Lett. 14, 2459–2462 (2004).

    CAS  PubMed  Google Scholar 

  9. Schweitzer, B. A. & Kool, E. T. Hydrophobic, non-hydrogen-bonding bases and base pairs in DNA. J. Am. Chem. Soc. 117, 1863–1872 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hirao, I. et al. An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA. Nat. Methods 3, 729–735 (2006).

    CAS  PubMed  Google Scholar 

  11. Malyshev, D. A. & Romesberg, F. E. The expanded genetic alphabet. Angew. Chem. Int. Ed. 54, 11930–11944 (2015).

    CAS  Google Scholar 

  12. Clever, G. H., Kaul, C. & Carell, T. DNA–metal base pairs. Angew. Chem. Int. Ed. 46, 6226–6236 (2007).

    CAS  Google Scholar 

  13. Ono, A., Torigoe, H., Tanaka, Y. & Okamoto, I. Binding of metal ions by pyrimidine base pairs in DNA duplexes. Chem. Soc. Rev. 40, 5855–5866 (2011).

    CAS  PubMed  Google Scholar 

  14. Takezawa, Y. & Shionoya, M. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson–Crick base pairs. Acc. Chem. Res. 45, 2066–2076 (2012).

    CAS  PubMed  Google Scholar 

  15. Scharf, P. & Müller, J. Nucleic acids with metal-mediated base pairs and their applications. ChemPlusChem 78, 20–34 (2013).

    CAS  Google Scholar 

  16. Tanaka, Y. et al. Structures, physicochemical properties, and applications of T–Hg(II)–T, C–Ag(I)–C, and other metallo-base-pairs. Chem. Commun. 51, 17343–17360 (2015).

    CAS  Google Scholar 

  17. Ono, A. & Togashi, H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew. Chem. Int. Ed. 43, 4300–4302 (2004).

    CAS  Google Scholar 

  18. Ono, A. et al. Specific interactions between silver(I) ions and cytosine–cytosine pairs in DNA duplexes. Chem. Commun. 51, 4825–4827 (2008).

    Google Scholar 

  19. Müller, J. Chemistry: metals line up for DNA. Nature 444, 698 (2006).

    PubMed  Google Scholar 

  20. Liu, S. et al. Direct conductance measurement of individual metallo-DNA duplexes within single-molecule break junctions. Angew. Chem. Int. Ed. 50, 8886–8890 (2011).

    CAS  Google Scholar 

  21. Ehrenschwender, T. et al. Development of a metal-ion-mediated base pair for electron transfer in DNA. Chem. Eur. J. 19, 12547–12552 (2013).

    CAS  PubMed  Google Scholar 

  22. Tanaka, K. et al. Programmable self-assembly of metal ions inside artificial DNA duplexes. Nat. Nanotechnol. 1, 190–194 (2006).

    CAS  PubMed  Google Scholar 

  23. Clever, G. H. & Carell, T. Controlled stacking of 10 transition-metal ions inside a DNA duplex. Angew. Chem. Int. Ed. 46, 250–253 (2007).

    CAS  Google Scholar 

  24. Schmidbaur, H. & Schier, A. Argentophilic interactions. Angew. Chem. Int. Ed. 54, 746–784 (2015).

    CAS  Google Scholar 

  25. Atoji, M., Richardson, J. W. & Rundle, R. E. On the crystal structures of the magnus salts, Pt(NH3)4PtCl4 . J. Am. Chem. Soc. 79, 3017–3020 (1957).

    CAS  Google Scholar 

  26. Blake, A. J., Champness, N. R., Chung, S. S. M., Li, W. S. & Schroder, M. In situ ligand synthesis and construction of an unprecedented three-dimensional array with silver(I): a new approach to inorganic crystal engineering. Chem. Commun. 1675–1676 (1997).

  27. Chen, C. Y., Zeng, J. Y. & Lee, H. M. Argentophilic interaction and anionic control of supramolecular structures in simple silver pyridine complexes. Inorg. Chim. Acta 360, 21–30 (2007).

    CAS  Google Scholar 

  28. Kondo, J. et al. High-resolution crystal structure of a silver(I)–RNA hybrid duplex containing Watson–Crick-like C–silver(I)–C metallo-base pairs. Angew. Chem. Int. Ed. 54, 13323–13326 (2015).

    CAS  Google Scholar 

  29. Ennifar, E., Walter, P. & Dumas, P. A crystallographic study of the binding of 13 metal ions to two related RNA duplexes. Nucleic Acids Res. 31, 2671–2682 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kondo, J. et al. Crystal structure of metallo DNA duplex containing consecutive Watson–Crick-like T–Hg(II)–T base pairs. Angew. Chem. Int. Ed. 53, 2385–2388 (2014).

    CAS  Google Scholar 

  31. Yamaguchi, H. et al. The structure of metallo-DNA with consecutive thymine–HgII–thymine base pairs explains positive entropy for the metallo base pair formation. Nucleic Acids Res. 42, 4094–4099 (2014).

    CAS  PubMed  Google Scholar 

  32. Bondi, A. Van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964).

    CAS  Google Scholar 

  33. Wells, A. F. Structural Inorganic Chemistry 5th edn (Clarendon, 1984).

    Google Scholar 

  34. Johannsen, S., Megger, N., Böhme, D., Sigel, R. K. O. & Müller, J. Solution structure of a DNA double helix with consecutive metal-mediated base pairs. Nat. Chem. 2, 229–234 (2010).

    CAS  PubMed  Google Scholar 

  35. Kumbhar, S., Johannsen, S., Sigel, R. K. O., Waller, M. P. & Müller, J. A QM/MM refinement of an experimental DNA structure with metal-mediated base pairs. J. Inorg. Biochem. 127, 203–210 (2013).

    CAS  PubMed  Google Scholar 

  36. Dairaku, T. et al. Structure determination of an AgI-mediated cytosine–cytosine base pair within DNA duplex in solution with 1H/15N/109Ag NMR spectroscopy. Chem. Eur. J. 22, 13028–13031 (2016).

    CAS  PubMed  Google Scholar 

  37. Palmans, R., MacQueen, D. B., Pierpont, C. G. & Frank, A. J. Synthesis and characterization of bis(2,2′-bipyridyl)platinum(I): a novel microtubular linear-chain complex. J. Am. Chem. Soc. 118, 12647–12653 (1996).

    CAS  Google Scholar 

  38. Kiguchi, M. et al. Highly conductive [3 × n] gold-ion clusters enclosed within self-assembled cages. Angew. Chem. Int. Ed. 52, 6202–6205 (2013).

    CAS  Google Scholar 

  39. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    CAS  PubMed  Google Scholar 

  40. Adams, P. D. et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS  PubMed  Google Scholar 

  41. Grosse-Kunstleve, R. W. & Adams, P. D. Substructure search procedures for macromolecular structures. Acta Crystallogr. D 59, 1966–1973 (2003).

    CAS  PubMed  Google Scholar 

  42. Terwilliger, T. C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D 65, 582–601 (2009).

    CAS  PubMed  Google Scholar 

  43. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2162 (2002).

    Google Scholar 

  44. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS  PubMed  Google Scholar 

  45. Afonine, P. V. et al. Towards automated crystallographic structure refinement with Phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).

    CAS  PubMed  Google Scholar 

  46. Olson, W. K. et al. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 313, 229–237 (2001).

    CAS  PubMed  Google Scholar 

  47. Lu, X. J. & Olson, W. K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108–5121 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 24245037) and in part by a Strategic Research Foundation Grant-aided Project for Private Universities (No. S1201015) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. J.K. was also supported by the Murata Science Foundation. We thank the Photon Factory for the provision of synchrotron radiation facilities (No. 2013G727, 2015G533). We acknowledge Y. Matsuda at the Tokushima Bunri University for sample preparation.

Author information

Authors and Affiliations

Authors

Contributions

J.K., A.O. and Y.Tan. supervised the project. Y.Tad. and J.K. solved the crystal structure. T.D., Y.H. and Y.Tan. performed the NMR analyses. H.S. synthesized the oligonucleotides and performed preliminary experiments. All the authors contributed to discussions.

Corresponding author

Correspondence to Jiro Kondo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1049 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondo, J., Tada, Y., Dairaku, T. et al. A metallo-DNA nanowire with uninterrupted one-dimensional silver array. Nature Chem 9, 956–960 (2017). https://doi.org/10.1038/nchem.2808

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2808

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing