Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent singlet fission activated by symmetry breaking

Abstract

Singlet fission, in which a singlet exciton is converted to two triplet excitons, is a process that could be beneficial in photovoltaic applications. A full understanding of the dynamics of singlet fission in molecular systems requires detailed knowledge of the relevant potential energy surfaces and their (conical) intersections. However, obtaining such information is a nontrivial task, particularly for molecular aggregates. Here we investigate singlet fission in rubrene crystals using transient absorption spectroscopy and state-of-the-art quantum chemical calculations. We observe a coherent and ultrafast singlet-fission channel as well as the well-known and conventional thermally assisted incoherent channel. This coherent channel is accessible because the conical intersection for singlet fission on the excited-state potential energy surface is located very close to the equilibrium position of the ground-state potential energy surface and also because of the excitation of an intermolecular symmetry-breaking mode, which activates the electronic coupling necessary for singlet fission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular stacking structure and orbital overlap between adjacent molecules in rubrene crystal.
Figure 2: Steady state and transient absorption spectra.
Figure 3: Oscillatory features in transient absorption.
Figure 4: Potential energy curves along intermolecular vibrational coordinates.
Figure 5: Schematic illustrations of singlet fission mechanisms.

Similar content being viewed by others

References

  1. Nakamura, H. Nonadiabatic Transition: Concepts, Basic Theories and Applications (World Scientific, 2012).

    Book  Google Scholar 

  2. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  3. Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).

    Article  CAS  Google Scholar 

  4. Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Smith, M. B. & Michl, J. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64, 361–386 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Yost, S. R. et al. A transferable model for singlet-fission kinetics. Nat. Chem. 6, 492–497 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Alguire, E. C., Subotnik, J. E. & Damrauer, N. H. Exploring non-Condon effects in a covalent tetracene dimer: how important are vibrations in determining the electronic coupling for singlet fission? J. Phys. Chem. A 119, 299–311 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Tamura, H., Huix-Rotllant, M., Burghardt, I., Olivier, Y. & Beljonne, D. First-principles quantum dynamics of singlet fission: coherent versus thermally activated mechanisms governed by molecular π stacking. Phys. Rev. Lett. 115, 107401 (2015).

    Article  PubMed  CAS  Google Scholar 

  9. Parker, S. M., Seideman, T., Ratner, M. A. & Shiozaki, T. Model Hamiltonian analysis of singlet fission from first principles. J. Phys. Chem. C 118, 12700–12705 (2014).

    Article  CAS  Google Scholar 

  10. Greyson, E. C., Vura-Weis, J., Michl, J. & Ratner, M. A. Maximizing singlet fission in organic dimers: theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer. J. Phys. Chem. B 114, 14168–14177 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Grumstrup, E. M., Johnson, J. C. & Damrauer, N. H. Enhanced triplet formation in polycrystalline tetracene films by femtosecond optical-pulse shaping. Phys. Rev. Lett. 105, 257403 (2010).

    Article  PubMed  CAS  Google Scholar 

  12. Zimmerman, P. M., Bell, F., Casanova, D. & Head-Gordon, M. Mechanism for singlet fission in pentacene and tetracene: from single exciton to two triplets. J. Am. Chem. Soc. 133, 19944–19952 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Wilson, M. W. B. et al. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. Am. Chem. Soc. 133, 11830–11833 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Chan, W.-L. et al. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science 334, 1541–1545 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Chan, W.-L., Ligges, M. & Zhu, X.-Y. The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nat. Chem. 4, 840–845 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Teichen, P. E. & Eaves, J. D. A microscopic model of singlet fission. J. Phys. Chem. B 116, 11473–11481 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Chan, W.-L. et al. The quantum coherent mechanism for singlet fission: experiment and theory. Acc. Chem. Res. 46, 1321–1329 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Feng, X., Luzanov, A. V. & Krylov, A. I. Fission of entangled spins: an electronic structure perspective. J. Phys. Chem. Lett. 4, 3845–3852 (2013).

    Article  CAS  Google Scholar 

  19. Beljonne, D., Yamagata, H., Brédas, J. L., Spano, F. C. & Olivier, Y. Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene. Phys. Rev. Lett. 110, 226402 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Microscopic theory of singlet exciton fission. II.: application to pentacene dimers and the role of superexchange. J. Chem. Phys. 138, 114103 (2013).

    Article  PubMed  CAS  Google Scholar 

  21. Renaud, N., Sherratt, P. A. & Ratner, M. A. Mapping the relation between stacking geometries and singlet fission yield in a class of organic crystals. J. Phys. Chem. Lett. 4, 1065–1069 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Akimov, A. V. & Prezhdo, O. V. Nonadiabatic dynamics of charge transfer and singlet fission at the pentacene/C60 interface. J. Am. Chem. Soc. 136, 1599–1608 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Microscopic theory of singlet exciton fission. III: crystalline pentacene. J. Chem. Phys. 141, 074705 (2014).

    Article  PubMed  CAS  Google Scholar 

  24. Zeng, T., Hoffmann, R. & Ananth, N. The low-lying electronic states of pentacene and their roles in singlet fission. J. Am. Chem. Soc. 136, 5755–5764 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Musser, A. J. et al. Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11, 352–357 (2015).

    Article  CAS  Google Scholar 

  26. Renaud, N. & Grozema, F. C. Intermolecular vibrational modes speed up singlet fission in perylenediimide crystals. J. Phys. Chem. Lett. 6, 360–365 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Aragó, J. & Troisi, A. Dynamics of the excitonic coupling in organic crystals. Phys. Rev. Lett. 114, 026402 (2015).

    Article  PubMed  CAS  Google Scholar 

  28. Bakulin, A. A. et al. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy. Nat. Chem. 8, 16–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Fujihashi, Y. & Ishizaki, A. Fluctuations in electronic energy affecting singlet fission dynamics and mixing with charge-transfer state: quantum dynamics study. J. Phys. Chem. Lett. 7, 363–369 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).

    Article  CAS  Google Scholar 

  31. Jortner, J. & Bixon, M. Intramolecular vibrational excitations accompanying solvent-controlled electron transfer reactions. J. Chem. Phys. 88, 167–170 (1988).

    Article  CAS  Google Scholar 

  32. Monahan, N. R. et al. Dynamics of the triplet-pair state reveals the likely coexistence of coherent and incoherent singlet fission in crystalline hexacene. Nat. Chem. 9, 341–346 (2016).

    Article  PubMed  CAS  Google Scholar 

  33. Ma, L. et al. Singlet fission in rubrene single crystal: direct observation by femtosecond pump-probe spectroscopy. Phys. Chem. Chem. Phys. 14, 8307–8312 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Ma, L. et al. Fluorescence from rubrene single crystals: interplay of singlet fission and energy trapping. Phys. Rev. B 87, 201203 (2013).

    Article  CAS  Google Scholar 

  35. Irkhin, P., Ryasnyanskiy, A., Koehler, M. & Biaggio, I. Absorption and photoluminescence spectroscopy of rubrene single crystals. Phys. Rev. B 86, 085143 (2012).

    Article  CAS  Google Scholar 

  36. Sai, N., Tiago, M. L., Chelikowsky, J. R. & Reboredo, F. A. Optical spectra and exchange-correlation effects in molecular crystals. Phys. Rev. B 77, 161306 (2008).

    Article  CAS  Google Scholar 

  37. Song, L. & Fayer, M. Temperature dependent intersystem crossing and triplet–triplet absorption of rubrene in solid solution. J. Lumin. 50, 75–81 (1991).

    Article  CAS  Google Scholar 

  38. Venuti, E. et al. Polarized Raman spectra of a rubrene single crystal. J. Phys. Chem. C 112, 17416–17422 (2008).

    Article  CAS  Google Scholar 

  39. Ren, Z. Q., McNeil, L. E., Liu, S. & Kloc, C. Molecular motion and mobility in an organic single crystal: Raman study and model. Phys. Rev. B 80, 245211 (2009).

    Article  CAS  Google Scholar 

  40. West, B. A., Womick, J. M., McNeil, L. E., Tan, K. J. & Moran, A. M. Ultrafast dynamics of Frenkel excitons in tetracene and rubrene single crystals. J. Phys. Chem. C 114, 10580–10591 (2010).

    Article  CAS  Google Scholar 

  41. Yada, H. et al. Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz spectroscopy. Appl. Phys. Lett. 105, 143302 (2014).

    Article  CAS  Google Scholar 

  42. Takeya, J. et al. Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett. 90, 102120 (2007).

    Article  CAS  Google Scholar 

  43. Watanabe, K., Matsumoto, Y., Yasuike, T. & Nobusada, K. Adsorbate-localized versus substrate-mediated excitation mechanisms for generation of coherent Cs–Cu stretching vibration at Cu(111). J. Phys. Chem. A 115, 9528–9535 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Shiozaki, T., Györffy, W., Celani, P. & Werner, H.-J. Extended multi-state complete active space second-order perturbation theory: energy and nuclear gradients. J. Chem. Phys. 135, 081106 (2011).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Uemura, S. Watanabe, K. Miwa and N. Namba for their help in fabricating the rubrene crystals and A. Ishizaki for insightful discussion. This work was supported by the Grant-in-Aid for Scientific Research (A) from the Japan Society for the Promotion of Sciences (grant no. 22245001 and 25248006), Grant-in-Aid for Challenging Exploratory Research from Japan Society for the Promotion of Science (grant no. 24655011), Kyoto University Global COE program, Grants for Excellent Graduate Schools, MEXT, Japan, and the programme of Network of Joint Research Centre for Advanced Materials and Devices.

Author information

Authors and Affiliations

Authors

Contributions

K.M. performed the measurements and analysed the data with the help of S.Tanaka; Y.K. performed the quantum chemical calculations with the help of T.Y.; K.W. supervized the measurements and contributed the mechanisms of coherent excitation and coherent phonon generation; J.T. synthesized and supplied rubrene crystallines; S.Takahashi performed follow-up measurements; Y.M., K.M., Y.K., and K.W. wrote the manuscript with contributions from T.S.; all authors discussed the results and contributed to the manuscript; Y.M. organized and supervized the project.

Corresponding author

Correspondence to Yoshiyasu Matsumoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyata, K., Kurashige, Y., Watanabe, K. et al. Coherent singlet fission activated by symmetry breaking. Nature Chem 9, 983–989 (2017). https://doi.org/10.1038/nchem.2784

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2784

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing