Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substrate control in stereoselective lanthionine biosynthesis

Abstract

Enzymes are typically highly stereoselective catalysts that enforce a reactive conformation on their native substrates. We report here a rare example in which the substrate controls the stereoselectivity of an enzyme-catalysed Michael-type addition during the biosynthesis of lanthipeptides. These natural products contain thioether crosslinks formed by a cysteine attack on dehydrated Ser and Thr residues. We demonstrate that several lanthionine synthetases catalyse highly selective anti-additions in which the substrate (and not the enzyme) determines whether the addition occurs from the re or si face. A single point mutation in the peptide substrate completely inverted the stereochemical outcome of the enzymatic modification. Quantum mechanical calculations reproduced the experimentally observed selectivity and suggest that conformational restraints imposed by the amino-acid sequence on the transition states determine the face selectivity of the Michael-type cyclization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthesis of class II lanthipeptides.
Figure 2: GC-MS analysis of in vivo modified HalA2-CylLS, LtnA2-CylLS and ProcA3.2-CylLS chimeric peptides.
Figure 3: Structural characterization of the HalM2-modified HalA2-T2A peptide.
Figure 4: Secondary structure of the A ring of the CylLS core sequence derived from MD simulations.
Figure 5: Lowest-energy QM TSs for the re- and si-face Michael-type additions that generate the A ring in the CylLS core sequence.

Similar content being viewed by others

References

  1. Masamune, S., Choy, W., Petersen, J. S. & Sita, L. R. Double asymmetric synthesis and a new strategy for stereochemical control in organic synthesis. Angew. Chem. Int. Ed. Engl. 24, 1–30 (1985).

    Article  Google Scholar 

  2. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang, X. & van der Donk, W. A. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis. Chem. Eur. J. 19, 7662–7677 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Siezen, R. J., Kuipers, O. P. & de Vos, W. M. Comparison of lantibiotic gene clusters and encoded proteins. Anton. Leeuw. 69, 171–184 (1996).

    Article  CAS  Google Scholar 

  5. Xie, L. et al. Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science 303, 679–681 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Bierbaum, G. & Sahl, H. G. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr. Pharm. Biotechnol. 10, 2–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Cotter, P. D., Hill, C. & Ross, R. P. Bacterial lantibiotics: strategies to improve therapeutic potential. Curr. Protein Pept. Sci. 6, 61–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Chatterjee, C., Paul, M., Xie, L. & van der Donk, W. A. Biosynthesis and mode of action of lantibiotics. Chem. Rev. 105, 633–684 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Tang, W. & van der Donk, W. A. The sequence of the enterococcal cytolysin imparts unusual lanthionine stereochemistry. Nature Chem. Biol. 9, 157–159 (2013).

    Article  CAS  Google Scholar 

  10. Cox, C. R., Coburn, P. S. & Gilmore, M. S. Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr. Protein Pept. Sci. 6, 77–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Huycke, M. M., Spiegel, C. A. & Gilmore, M. S. Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 35, 1626–1634 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Libertin, C. R., Dumitru, R. & Stein, D. S. The hemolysin/bacteriocin produced by enterococci is a marker of pathogenicity. Diagn. Microbiol. Infect. Dis. 15, 115–120 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Chow, J. W. et al. Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob. Agents Chemother. 37, 2474–2477 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McClerren, A. L. et al. Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc. Natl Acad. Sci. USA 103, 17243–17248 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi, Y., Yang, X., Garg, N. & van der Donk, W. A. Production of lantipeptides in Escherichia coli. J. Am. Chem. Soc. 133, 2338–2341 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, W., Chan, A. S., Liu, H., Cochrane, S. A. & Vederas, J. C. Solid supported chemical syntheses of both components of the lantibiotic lacticin 3147. J. Am. Chem. Soc. 133, 14216–14219 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Suda, S., Cotter, P. D., Hill, C. & Ross, R. P. Lacticin 3147-biosynthesis, molecular analysis, immunity, bioengineering and applications. Curr. Protein Pept. Sci. 13, 193–204 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Li, B. et al. Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proc. Natl Acad. Sci. USA 107, 10430–10435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang, W. & van der Donk, W. A. Structural characterization of four prochlorosins: a novel class of lantipeptides produced by planktonic marine cyanobacteria. Biochemistry 51, 4271–4279 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Q., Yu, Y., Velásquez, J. E. & van der Donk, W. A. Evolution of lanthipeptide synthetases. Proc. Natl Acad. Sci. USA 109, 18361–18366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bindman, N. A. & van der Donk, W. A. A general method for fluorescent labeling of the N-termini of lanthipeptides and its application to visualize their cellular localization. J. Am. Chem. Soc. 135, 10362–10371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Michelson, A. Z. et al. Gas-phase studies of substrates for the DNA mismatch repair enzyme MutY. J. Am. Chem. Soc. 134, 19839–19850 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zu, L. et al. Effect of isotopically sensitive branching on product distribution for pentalenene synthase: support for a mechanism predicted by quantum chemistry. J. Am. Chem. Soc. 134, 11369–11371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zanuy, D., Casanovas, J. & Alemán, C. The conformation of dehydroalanine in short homopeptides: molecular dynamics simulations of a 6-residue chain. Biophys. Chem. 98, 301–312 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Mathur, P., Ramakumar, S. & Chauhan, V. S. Peptide design using alpha,beta-dehydro amino acids: from beta-turns to helical hairpins. Biopolymers 76, 150–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Krenske, E. H., Petter, R. C., Zhu, Z. & Houk, K. N. Transition states and energetics of nucleophilic additions of thiols to substituted alpha,beta-unsaturated ketones: substituent effects involve enone stabilization, product branching, and solvation. J. Org. Chem. 76, 5074–5081 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Lohans, C. T., Li, J. L. & Vederas, J. C. Structure and biosynthesis of carnolysin, a homologue of enterococcal cytolysin with D-amino acids. J. Am. Chem. Soc. 136, 13150–13153 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Zhou, H. et al. A fungal ketoreductase domain that displays substrate-dependent stereospecificity. Nature Chem. Biol. 8, 331–333 (2012).

    Article  CAS  Google Scholar 

  29. May, O., Nguyen, P. T. & Arnold, F. H. Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine. Nature Biotechnol. 18, 317–320 (2000).

    Article  CAS  Google Scholar 

  30. Turner, N. J. Controlling chirality. Curr. Opin. Biotechnol. 14, 401–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Mugford, P. F., Wagner, U. G., Jiang, Y., Faber, K. & Kazlauskas, R. J. Enantiocomplementary enzymes: classification, molecular basis for their enantiopreference, and prospects for mirror-image biotransformations. Angew. Chem. Int. Ed. 47, 8782–8793 (2008).

    Article  CAS  Google Scholar 

  32. Reetz, M. T. Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. Angew. Chem. Int. Ed. 50, 138–174 (2011).

    Article  CAS  Google Scholar 

  33. Mukherjee, S. & van der Donk, W. A. Mechanistic studies on the substrate-tolerant lanthipeptide synthetase ProcM. J. Am. Chem. Soc. 136, 10450–10459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general AMBER force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Bayly, C. I., Cieplak, P., Cornell, W. D. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).

    Article  CAS  Google Scholar 

  36. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  37. Hamelberg, D., Mongan, J. & McCammon, J. A. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J. Chem. Phys. 120, 11919–11929 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Pierce, L. C., Salomon-Ferrer, R., de Oliveira, C. A. F., McCammon, J. A. & Walker, R. C. Routine access to millisecond time scale events with accelerated molecular dynamics. J. Chem. Theory Comput. 8, 2997–3002 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frisch, M. J. et al. Gaussian 09 (Gaussian Inc., Wallingford, Connecticut, 2009).

  40. Chai, J. D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  42. Scalmani, G. & Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 132, 114110 (2010).

    Article  PubMed  CAS  Google Scholar 

  43. Garg, N., Tang, W., Goto, Y., Nair, S. K. & van der Donk, W. A. Lantibiotics from Geobacillus thermodenitrificans. Proc. Natl Acad. Sci. USA 109, 5241–5246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. C. Martínez-Cuesta for providing the pBAC105 plasmid encoding LtnM2 from Lactococcus lactis IFPL105 and L. A. Furgerson for constructing the pET15b-HalA2-T2A plasmid. We thank F. Sun for assistance with GC-MS analysis. This work was supported by the National Institutes of Health (GM 58822 to W.A.v.d.D. and GM 075962 to K.N.H.). Calculations were performed on the Hoffman2 Cluster at the University of California, Los Angeles, and the Extreme Science and Engineering Discovery Environment, which is supported by the National Science Foundation (OCI-1053575).

Author information

Authors and Affiliations

Authors

Contributions

W.T. and W.A.v.d.D. designed the study. W.T. performed all the experiments. G.J.O. performed all the theoretical studies. W.T., G.J.O., K.N.H. and W.A.v.d.D. analysed the data and wrote the manuscript.

Corresponding authors

Correspondence to K. N. Houk or Wilfred A. van der Donk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3043 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Jiménez-Osés, G., Houk, K. et al. Substrate control in stereoselective lanthionine biosynthesis. Nature Chem 7, 57–64 (2015). https://doi.org/10.1038/nchem.2113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing