Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A human genome-wide screen for regulators of clathrin-coated vesicle formation reveals an unexpected role for the V-ATPase

Subjects

Abstract

Clathrin-mediated endocytosis is essential for a wide range of cellular functions. We used a multi-step siRNA-based screening strategy to identify regulators of the first step in clathrin-mediated endocytosis, formation of clathrin-coated vesicles (CCVs) at the plasma membrane. A primary genome-wide screen identified 334 hits that caused accumulation of CCV cargo on the cell surface. A secondary screen identified 92 hits that inhibited cargo uptake and/or altered the morphology of clathrin-coated structures. The hits include components of four functional complexes: coat proteins, V-ATPase subunits, spliceosome-associated proteins and acetyltransferase subunits. Electron microscopy revealed that V-ATPase depletion caused the cell to form aberrant non-constricted clathrin-coated structures at the plasma membrane. The V-ATPase-knockdown phenotype was rescued by addition of exogenous cholesterol, indicating that the knockdown blocks clathrin-mediated endocytosis by preventing cholesterol from recycling from endosomes back to the plasma membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of the multi-step screening strategy.
Figure 2: Genome-wide primary screen for surface accumulation of CCV cargo.
Figure 3: Secondary screen for efficiency of CME.
Figure 4: Secondary screen to analyse the morphology of CCSs at the PM.
Figure 5: Functional clusters within the hits.
Figure 6: siRNA-mediated depletion of V-ATPase or prolonged inhibition with BafA1 leads to accumulation of large, non-constricted CCSs at the PM.
Figure 7: Inhibition of V-ATPase does not lock clathrin in microcages.
Figure 8: Soluble cholesterol rescues function and morphology of the PM CCPs in the V-ATPase-depleted cells.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Pelkmans, L. et al. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436, 78–86 (2005).

    Article  CAS  Google Scholar 

  2. Snijder, B. et al. Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461, 520–523 (2009).

    Article  CAS  Google Scholar 

  3. Collinet, C. et al. Systems survey of endocytosis by multiparametric image analysis. Nature 464, 243–249 (2010).

    Article  CAS  Google Scholar 

  4. Balklava, Z., Pant, S., Fares, H. & Grant, B.D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat. Cell Biol. 9, 1066–1073 (2007).

    Article  CAS  Google Scholar 

  5. Kozik, P., Francis, R. W., Seaman, M. N. & Robinson, M. S. A screen for endocytic motifs. Traffic 11, 843–855 (2010).

    Article  CAS  Google Scholar 

  6. Donaldson, J. G. & Williams, D. B. Intracellular assembly and trafficking of MHC class I molecules. Traffic 10, 1745–1752 (2009).

    Article  CAS  Google Scholar 

  7. Zhang, X. D. Novel analytic criteria and effective plate designs for quality control in genome-scale RNAi screens. J. Biomol. Screen. 13, 363–377 (2008).

    Article  CAS  Google Scholar 

  8. Keyel, P. A. et al. A single common portal for clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors. Mol. Biol. Cell 17, 4300–4317 (2006).

    Article  CAS  Google Scholar 

  9. Jackson, A. et al. Position-specific chemical modification of siRNAs reduces ‘off-target’ transcript silencing. RNA 12, 1197–1205 (2006).

    Article  CAS  Google Scholar 

  10. Birmingham, A. et al. 3’ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3, 199–204 (2006).

    Article  CAS  Google Scholar 

  11. Tebar, F., Bohlander, S. K. & Sorkin, A. Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Mol. Biol. Cell 10, 2687–2702 (1999).

    Article  CAS  Google Scholar 

  12. Hinrichsen, L., Harborth, J., Andrees, L., Weber, K. & Ungewickell, E. J. Effect of clathrin heavy chain- and α-adaptin-specific small inhibitory RNAs on endocytic accessory proteins and receptor trafficking in HeLa cells. J. Biol. Chem. 278, 45160–45170 (2003).

    Article  CAS  Google Scholar 

  13. Von Mering, C. et al. STRING: known and predicted protein-protein associations,integrated and transferred across organisms. Nucl. Acids Res. 33, D433–D437 (2005).

    Article  CAS  Google Scholar 

  14. Johnson, L. S., Dunn, K. W., Pytowski, B. & McGraw, T. E. Endosome acidification and receptor trafficking: bafilomycin A1 slows receptor externalization by a mechanism involving the receptor’s internalization motif. Mol. Biol. Cell 4, 1251–1266 (1993).

    Article  CAS  Google Scholar 

  15. Brown, D., Paunescu, T. G., Breton, S. & Marshansky, V. Regulation of the V-ATPase in kidney epithelial cells: dual role in acid-base homeostasis and vesicle trafficking. J. Exp. Biol. 212, 1762–1772 (2009).

    Article  CAS  Google Scholar 

  16. Heuser, J. Effects of cytoplasmic acidification on clathrin lattice morphology. J. Cell. Biol. 108, 401–411 (1989).

    Article  CAS  Google Scholar 

  17. Heuser, J. E. & Anderson, R. G. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J. Cell. Biol. 108, 389–400 (1989).

    Article  CAS  Google Scholar 

  18. Wu, X. et al. Clathrin exchange during clathrin-mediated endocytosis. J. Cell. Biol. 155, 291–300 (2001).

    Article  CAS  Google Scholar 

  19. Koivusalo, M. et al. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell. Biol. 188, 547–563 (2010).

    Article  CAS  Google Scholar 

  20. Cosson, P., de Curtis, I., Pouysségur, J., Griffiths, G. & Davoust, J. Low cytoplasmic pH inhibits endocytosis and transport from the trans-Golgi network to the cell surface. J. Cell. Biol. 108, 377–387 (1989).

    Article  CAS  Google Scholar 

  21. Mellman, I., Fuchs, R. & Helenius, A. Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem. 55, 663–700 (1986).

    Article  CAS  Google Scholar 

  22. Chapman, R. E. & Munro, S. Retrieval of TGN proteins from the cell surface requires endosomal acidification. EMBO J. 13, 2305–2312 (1994).

    Article  CAS  Google Scholar 

  23. Subtil, A. et al. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc. Natl Acad. Sci. USA 96, 6775–6780 (1999).

    Article  CAS  Google Scholar 

  24. Rodal, S. K. et al. Extraction of cholesterol with methyl- β-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol. Biol. Cell 10, 961–974 (1999).

    Article  CAS  Google Scholar 

  25. Hölttä-Vuori, M., Tanhuanpää, K., Möbius, W., Somerharju, P. & Ikonen, E. Modulation of cellular cholesterol transport and homeostasis by Rab11. Mol. Biol. Cell 13, 3107–3122 (2002).

    Article  Google Scholar 

  26. Furuchi, T., Aikawa, K., Arai, H. & Inoue, K. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, blocks lysosomal cholesterol trafficking in macrophages. J. Biol. Chem. 268, 27345–27348 (1993).

    CAS  PubMed  Google Scholar 

  27. Lange, Y., Ye, J. & Steck, T. L. Circulation of cholesterol between lysosomes and the plasma membrane. J. Biol. Chem. 273, 18915–18922 (1998).

    Article  CAS  Google Scholar 

  28. Taylor, M., Perrais, D. & Merrifield, C.J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011).

    Article  CAS  Google Scholar 

  29. Saffarian, S., Cocucci, E. & Kirchhausen, T. Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol. 7, e1000191 (2009).

    Article  Google Scholar 

  30. Hirst, J. et al. Auxilin depletion causes self-assembly of clathrin into membraneless cages in vivo. Traffic 9, 1354–1371 (2008).

    Article  CAS  Google Scholar 

  31. Motley, A., Bright, N. A., Seaman, M. N. & Robinson, M. S. Clathrin-mediated endocytosis in AP-2-depleted cells. J. Cell. Biol. 162, 909–918 (2003).

    Article  CAS  Google Scholar 

  32. Borner, G. H. et al. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles. J. Cell. Biol. 197, 141–160 (2012).

    Article  CAS  Google Scholar 

  33. Meyerholz, A. et al. Effect of clathrin assembly lymphoid myeloid leukemia protein depletion on clathrin coat formation. Traffic 6, 1225–1234 (2005).

    Article  CAS  Google Scholar 

  34. Huang, F., Khvorova, A., Marshall, W. & Sorkin, A. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J. Biol. Chem. 279, 16657–16661 (2004).

    Article  CAS  Google Scholar 

  35. Ball, C. L., Hunt, S. P. & Robinson, M. S. Expression and localization of α-adaptin isoforms. J. Cell Sci. 108, 2865–2875 (1995).

    CAS  PubMed  Google Scholar 

  36. Jackson, A. P., Seow, H. F., Holmes, N., Drickamer, K. & Parham, P. Clathrin light chains contain brain-specific insertion sequences and a region of homology with intermediate filaments. Nature 326, 154–159 (1987).

    Article  CAS  Google Scholar 

  37. Cao, H., Garcia, F. & McNiven, M. A. Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell 9, 2595–2609 (1998).

    Article  CAS  Google Scholar 

  38. McNiven, M. A., Cao, H., Pitts, K. R. & Yoon, Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem. Sci. 25, 115–120 (2000).

    Article  CAS  Google Scholar 

  39. Hofmann, J. C., Husedzinovic, A. & Gruss, O. J. The function of spliceosome components in open mitosis. Nucleus 1, 447–459 (2010).

    Article  Google Scholar 

  40. Fielding, A. B., Willox, A. K., Okeke, E. & Royle, S. J. Clathrin-mediated endocytosis is inhibited during mitosis. Proc. Natl Acad. Sci. USA 109, 6572–6577 (2012).

    Article  CAS  Google Scholar 

  41. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  Google Scholar 

  42. Gallant, P. Control of transcription by Pontin and Reptin. Trends Cell Biol. 17, 187–192 (2007).

    Article  CAS  Google Scholar 

  43. Sigala, B., Edwards, M., Puri, T. & Tsaneva, I. R. Relocalization of human chromatin remodeling cofactor TIP48 in mitosis. Exp. Cell Res. 310, 357–369 (2005).

    Article  CAS  Google Scholar 

  44. Lee, H. J., Chun, M. & Kandror, K. V. Tip60 and HDAC7 interact with the endothelin receptor a and may be involved in downstream signaling. J. Biol. Chem. 276, 16597–16600 (2001).

    Article  CAS  Google Scholar 

  45. Shepard, B. D., Tuma, D. J. & Tuma, P. L. Lysine acetylation induced by chronic ethanol consumption impairs dynamin-mediated clathrin-coated vesicle release. Hepatology 55, 1260–1270 (2011).

    Article  Google Scholar 

  46. Infante, R. E. et al. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc. Natl Acad. Sci. USA 105, 15287–15292 (2008).

    Article  CAS  Google Scholar 

  47. Deffieu, M. S. & Pfeffer, S. R. Niemann-Pick type C 1 function requires lumenal domain residues that mediate cholesterol-dependent NPC2 binding. Proc. Natl Acad. Sci. USA 108, 18932–18936 (2011).

    Article  CAS  Google Scholar 

  48. Lange, Y., Ye, J., Rigney, M. & Steck, T. Cholesterol movement in Niemann-Pick type C cells and in cells treated with amphiphiles. J. Biol. Chem. 275, 17468–17475 (2000).

    Article  CAS  Google Scholar 

  49. Lange, Y., Ye, J., Rigney, M. & Steck, T. L. Dynamics of lysosomal cholesterol in Niemann-Pick type C and normal human fibroblasts. J. Lipid Res. 43, 198–204 (2002).

    CAS  PubMed  Google Scholar 

  50. Liscum, L. Niemann-Pick type C mutations cause lipid traffic jam. Traffic 1, 218–225 (2000).

    Article  CAS  Google Scholar 

  51. Steck, T. L., Ye, J. & Lange, Y. Probing red cell membrane cholesterol movement with cyclodextrin. Biophys. J. 83, 2118–2125 (2002).

    Article  CAS  Google Scholar 

  52. Bruckner, R., Mansy, S., Ricardo, A., Mahadevan, L. & Szostak, J. Flip-flop-induced relaxation of bending energy: implications for membrane remodeling. Biophys. J. 97, 3113–3122 (2009).

    Article  CAS  Google Scholar 

  53. Liu, K., Surendhran, K., Nothwehr, S. F. & Graham, T. R. P4-ATPase requirement for AP-1/clathrin function in protein transport from the trans-Golgi network and early endosomes. Mol. Biol. Cell 19, 3526–3535 (2008).

    Article  CAS  Google Scholar 

  54. Pérez-Sayáns, M., Somoza-Martı´n, J. M., Barros-Angueira, F., Rey, J. M. & Garcı´a-Garcı´a, A. V-ATPase inhibitors and implication in cancer treatment. Cancer Treat. Rev. 35, 707–713 (2009).

    Article  Google Scholar 

  55. Straud, S., Zubovych, I., De Brabander, J. & Roth, M. Inhibition of iron uptake is responsible for differential sensitivity to V-ATPase inhibitors in several cancer cell lines. PLoS ONE 5, e11629 (2010).

    Article  Google Scholar 

  56. Yan, Y., Denef, N. & Schüpbach, T. The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila. Dev. Cell 17, 387–402 (2009).

    Article  CAS  Google Scholar 

  57. Vaccari, T., Duchi, S., Cortese, K., Tacchetti, C. & Bilder, D. The vacuolar ATPase is required for physiological as well as pathological activation of the Notch receptor. Development 137, 1825–1832 (2010).

    Article  CAS  Google Scholar 

  58. Hermle, T., Saltukoglu, D., Grünewald, J., Walz, G. & Simons, M. Regulation of Frizzled-dependent planar polarity signaling by a V-ATPase subunit. Curr. Biol. 20, 1269–1276 (2010).

    Article  CAS  Google Scholar 

  59. Cruciat, C. M. et al. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 327, 459–463 (2010).

    Article  CAS  Google Scholar 

  60. Windler, S. L. & Bilder, D. Endocytic internalization routes required for delta/notch signaling. Curr. Biol. 20, 538–543 (2010).

    Article  CAS  Google Scholar 

  61. Seugnet, L., Simpson, P. & Haenlin, M. Requirement for dynamin during Notch signaling in Drosophila neurogenesis. Dev. Biol. 192, 585–598 (1997).

    Article  CAS  Google Scholar 

  62. Gagliardi, M., Piddini, E. & Vincent, J. P. Endocytosis: a positive or a negative influence on Wnt signalling? Traffic 9, 1–9 (2008).

    Article  CAS  Google Scholar 

  63. Yu, A. et al. Association of Dishevelled with the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling. Dev. Cell 12, 129–141 (2007).

    Article  CAS  Google Scholar 

  64. Tiwari, R. K., Kusari, J. & Sen, G. C. Functional equivalents of interferon-mediated signals needed for induction of an mRNA can be generated by double-stranded RNA and growth factors. EMBO J. 6, 3373–3378 (1987).

    Article  CAS  Google Scholar 

  65. Lin, S. M., Du, P., Huber, W. & Kibbe, W. A. Model-based variance-stabilizing transformation for Illumina microarray data. Nucl. Acids Res. 36, e11 (2008).

    Article  Google Scholar 

  66. Du, P., Kibbe, W. A. & Lin, S. M. lumi: a pipeline for processing Illumina microarray. Bioinformatics 24, 1547–1548 (2008).

    Article  CAS  Google Scholar 

  67. Heuser, J. The production of ‘cell cortices’ for light and electron microscopy. Traffic 1, 545–552 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Boutros (DKFZ) for providing the siRNA reannotation data, S. Arden (CIMR) for mRNA isolation, J. Bauer (Centre for Microarray Resources, Department of Pathology, Cambridge) for analysis of the microarray data, S. Grinstein (University of Toronto) for the pH sensor plasmids and helpful suggestions, J. Skepper (Multi-Imaging Centre, Department of Anatomy, University of Cambridge) for help with the critical-point drying, all members of the Robinson laboratory, in particular G. Borner, for invaluable discussions, and P. Luzio and J. Kilmartin for reading the manuscript and helpful suggestions. This work was financially supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Contributions

P.K. and M.S.R. designed the research; P.K. and C.S. carried out the genome-wide screen; P.K. and N.A.H. carried out the secondary screens; D.A.S. performed the thin-section analysis; D.A.S. and L.M.C. performed the unroofing; P.K. and N.A.H. performed the V-ATPase experiments; P.K., N.A.H., D.A.S., N.S. and J.W. analysed data; P.K. and N.S. designed the web page; P.K. and M.S.R. supervised the project; and P.K. and M.S.R. wrote the manuscript.

Corresponding authors

Correspondence to Patrycja Kozik, Daniela A. Sahlender, Christina Soromani, Jiahua Wu or Margaret S. Robinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2186 kb)

Supplementary Note

Supplementary Information (PDF 91 kb)

Supplementary Table 1

Supplementary Information (XLSX 240 kb)

Supplementary Table 2

Supplementary Information (XLSX 146 kb)

Supplementary Table 3

Supplementary Information (XLSX 3281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozik, P., Hodson, N., Sahlender, D. et al. A human genome-wide screen for regulators of clathrin-coated vesicle formation reveals an unexpected role for the V-ATPase. Nat Cell Biol 15, 50–60 (2013). https://doi.org/10.1038/ncb2652

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2652

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing