Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technology Review
  • Published:

Microscope-based techniques to study cell adhesion and migration

Abstract

Modern light microscopy has evolved to provide a variety of quantitative imaging techniques and also the capability to perturb structure–function relationships in living cells. These advances have been especially useful in the study of cell adhesion and migration. This review will focus on how such microscopy-based techniques can be used in situ to study molecular interactions and dynamics, to locally perturb actin-based structures and to measure the traction forces exerted by motile cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Techniques to determine dynamic composition, molecular association and transport/exchange for adhesive components.
Figure 2: Light-directed molecular perturbation techniques.
Figure 3: Traction force microscopy.

References

  1. Geiger, B. & Bershadsky, A. Assembly and mechanosensory function of focal contacts. Curr. Opin. Cell Biol. 13, 584–592 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Critchley, D. R. Focal adhesion – the cytoskeletal connection. Curr. Opin. Cell Biol. 12, 133–139 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Lee, J. & Jacobson, K. The composition and dynamics of cell-substratum adhesions in locomoting fish keratocytes. J. Cell Sci. 110, 2833–2844 (1997).

    CAS  PubMed  Google Scholar 

  4. Adams, J. C. Cell-matrix contact structures. Cell Mol. Life Sci. 58, 371–392 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Schoenwaelder, S. M. & Burridge, K. Bidirectional signalling between the cytoskeleton and integrins. Curr. Opin. Cell Biol. 11, 274–286 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Schwartz, M. A. Integrin signalling revisited. Trends Cell Biol. 11, 466–470 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Zamir, E. et al. Molecular diversity of cell-matrix adhesions. J. Cell Sci. 112, 1655–1669 (1999).

    CAS  PubMed  Google Scholar 

  8. Kam, Z., Zamir, E. & Geiger, B. Probing molecular processes in live cells by quantitative multidimensional microscopy. Trends Cell Biol. 11, 329–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Jovin, T. M. & Arndt-Jovin, D. J. in Cell Structure and Function by Microspectrofluometry (eds Kohen, E., Hirschberg, J. G. & Ploem, J. S.) 99–117 (Academic Press, London, 1989).

    Book  Google Scholar 

  10. Gadella, T. W. J., van der Krogt, G. N. M. & Bisseling, T. GFP-based FRET microscopy in living plant cells. Trends Plant Sci. 4, 287–291 (1999).

    Article  PubMed  Google Scholar 

  11. Baneyx, G., Baugh, L. & Vogel, V. Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 98, 14464–14468 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kam, Z., Volberg, T. & Geiger, B. Mapping of adherens junction components using microscopic resonance energy transfer imaging. J. Cell Sci. 108, 1051–1062 (1995).

    CAS  PubMed  Google Scholar 

  13. Sorkin, A., McClure, M., Huang, F. & Carter, R. Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr. Biol. 10, 1395–1398 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Mitra, R. D., Silva, C. M. & Youvan, D. C. Fluorescence resonance energy transfer between blue-emitting and red shifted excitation derivatives of the green fluorescent protein. Gene 173, 13–17 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Li, H. Y. et al. Protein-Protein Interaction of FHL3 with FHL2 and Visualization of Their Interaction by Green Fluorescent Proteins (GFP) Two-Fusion Fluorescence Resonance Energy Transfer (FRET). J. Cell. Biochem. 80, 293–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Zacharias, D. A., Baird, G. S. & Tsien, R. Y. Recent advances in technology for measuring and manipulating cell signals. Curr. Opin. Neurobiol. 10, 416–421 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Adams, S. R. et al. Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349, 694–697 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Zaccolo, M. et al. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nature Cell Biol. 2, 25–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Kraynov, V. S. et al. Localized Rac Activation Dynamics Visualized in Living Cells. Science 290, 333–337 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Mochizuki, N. et al. Spatio-temporal images of growth-factor -induced activation of Ras and Rap1. Nature 411, 1065–1067 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Wolf, D. E. Designing, building, and using a fluorescence recovery after photobleaching instrument. Methods Cell Biol. 30, 271–306 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. White, J. & Stelzer, E. Photobleaching GFP reveals protein dynamics inside live cells. Trends Cell Biol. 9, 61–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Reits, E. A. J. & Neefjes, J. J. From fixed to FRAP: measuring protein mobility and activity in living cells. Nature Cell Biol. 3, E145–E147 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Lippincott-Schwartz, J., Cole, N. & Presley, J. Unravelling Golgi membrane traffic with green fluorescent protein chimeras. Trends Cell Biol. 8, 16–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Edlund, M., Lotano, M. A. & Otey, C. A. Dynamics of α-actinin in focal adhesions and stress fibres visualized with α-actinin-green fluorescent protein. Cell Motil. Cytoskeleton 48, 198–200 (2001).

    Article  Google Scholar 

  27. Mitchison, T. J. et al. Caged fluorescent probes. Methods Enzymol. 291, 63–78 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Walker, J. W. et al. Signalling pathways underlying eosinophil cell motility revealed by caging peptides. Proc. Natl Acad. Sci. USA 95, 1568–1573 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Curley, K. & Lawrence, D. S. Photoactivation of a signal transduction pathway in living cells. J. Am. Chem. Soc. 120 8573–8574 (1998).

    Article  CAS  Google Scholar 

  30. Marriott, G. Caged protein conjugates and light-directed generation of protein activity: preparation, photoactivation, and spectroscopic characterization of caged G-actin conjugates. Biochemistry 33, 9092–9097 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Marriott, G., Ottl, J., Heidecker, M. & Gabriel, D. Light-directed activation of protein activity from caged protein conjugates. Methods Enzymol. 291, 95–116 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Marriott, G. & Ottl, J. Synthesis and applications of heterobifunctional photocleavable cross-linking reagents. Methods Enzymol. 291, 155–175 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Bayley, H. et al. Caged peptides and proteins by targeted chemical modification. Methods Enzymol. 291, 117–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Roy, P. et al. Local photorelease of caged thymosin b4 in locomoting keratocytes causes cell turning. J. Cell Biol. 153, 1035–1048 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, F. & Jay, D. G. Chromophore-assisted laser inactivation (CALI): probing protein function in situ with a high degree of spatial and temporal resolution. Trends Cell Biol. 6, 442–445 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Lamb, R. F. et al. Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts. Curr. Biol. 7, 682–688 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Liao, J. C., Roider, J. & Jay, D. G. Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free radicals. Proc. Natl Acad. Sci. USA 91, 2659–2663 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Surrey, T. et al. Chromophore-assisted light inactivation and self-organization of microtubules and motors. Proc. Natl Acad. Sci. USA 95, 4293–4298 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rajfur, Z. et al. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP-fusion proteins. Nature Cell Biol. 4, 286–293 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Harris, A. K., Wild, P. & Stopak, D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208, 177–179 (1980).

    Article  CAS  PubMed  Google Scholar 

  41. Beningo, K. A. & Wang, Y. L. Flexible substrata for the detection of cellular traction forces. Trends Cell Biol. 12, 79–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, J. et al. Traction forces generated by locomoting keratocytes. J. Cell Biol. 127, 1957–1964 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Dembo, M., Oliver, T., Ishihara, A. & Jacobson, K. Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys. J. 70, 2008–2022 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oliver, T., Dembo, M. & Jacobson, K. Separation of actomyosin-generated and adhesive traction forces in tethered cells provides a physical basis for gliding and turning locomotion in keratocytes. J. Cell Biol. 145, 589–604 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pelham, R. J. & Wang, Y. L. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Y. L. & Pelhan, R. J. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298, 489–496 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Munevar, S., Wang, Y. & Dembo, M. Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80, 1744–1757 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beningo, K. A. et al. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Galbraith, C. G. & Sheetz, M. P. A micromechanical device provides a new bend on fibroblast traction forces. Proc. Natl Acad. Sci. USA 94, 9114–9118 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Galbraith, G. C. & Sheetz, M. P. Keratocytes pull with similar forces on their dorsal and ventral surfaces. J. Cell Biol. 147, 1313–1324 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Balaban, N. Q., et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrate. Nature Cell Biol. 3, 466–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Heidemann, S. R., Kaech, S., Buxbaum, R. E. & Matus, A. Direct Observations of the Mechanical Behaviors of the Cytoskeleton in Living Fibroblasts. J. Cell Biol. 145, 109–122 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raucher, D. & Sheetz, M. P. Cell spreading and lamellipodial extension rate is regulated by membrane tension. J. Cell Biol. 148, 127–136 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88, 39–48 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Raucher, D. et al. Phosphatidylinositol 4,5-Bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100, 221–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Nishizaka, T., Shi, Q. & Sheetz, M. P. Position-dependent linkages of fibronectin- integrin-cytoskeleton. Proc. Natl Acad. Sci. USA 97, 692–697 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ishijima, A. & Yanagida, T. Single molecule nanobioscience. Trends Biochem. Sci. 26, 438–444 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Iino, R., Koyama, I. & Kusumi, A. Single molecule imaging of green fluorescent proteins in living cells: E-Cadherin forms oligomers on the free cell surface. Biophys. J. 80, 2667–2677 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ueda, M. et al. Single-molecule analysis of chemotactic signalling in Dictyoselium cells. Science 294, 864–867 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Ha, T. et al. Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl Acad. Sci. USA 93, 6264–6268 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Petersen, N. O. et al. Quantitation of membrane receptor distributions by image correlation spectroscopy: Concept and application. Biophys. J. 65, 1135–1146 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thompson, N. L. in Topics in Fluorescence Spectroscopy (ed. Lakowicz, J. R.) 337–378 (Plenum Press, New York, 1991).

    Google Scholar 

  66. Wiseman, P. W., Squier, J. A., Ellisman, M. H. & Wilson, K. R. Two-photon image correlation spectroscopy and image cross-correlation spectroscopy. J. Microsc. 200, 14–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Radmacher, M. Measuring the elastic properties of the biological samples with the AFM. IEEE Engineering in Medicine and Biology Magazine 16, 47–57 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Heinz, W. F. & Hoh, J. H. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotech. 17, 143–150 (1999).

    Article  CAS  Google Scholar 

  69. Petersen, N. O., McConnaughey, W. B. & Elson, E. L. Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. Proc. Natl Acad. Sci. USA 79, 5327–5331 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rotsch, C., Jacobson, K. & Radmacher, M. Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl Acad. Sci. USA 96, 921–926 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Matzke, R., Jacobon, K. & Radmacher, M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nature Cell Biol. 3, 607–610 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Yousaf, M. N. & Mrksich, M. Dynamic substrates: modulating the behaviors of attached cells. Trends Biotech. 28–35 (2000).

  73. Chen, C. S. et al. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Lewis, A. Near-field scanning optical microscopy in cell biology. Trends Cell Biol. 9, 70–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Lauffenburger, D. A. & Wells, A. Getting a grip: new insights for cell adhesion and traction. Nature Cell Biol. 3, E110–E112 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Periasamy, A. Fluorescence resonance energy transfer microscopy: a mini review. J. Biomed. Opt. 6, 287–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Xia, Z. & Liu, Y. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 81, 2395–2402 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kirsch, A. K., Subramaniam, V., Jenei, A. & Jovin, T. M. Fluorescence resonance energy transfer detected by scanning near-field optical microscopy. J. Microsc. 194, 448–454 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Bastiaens, P. I. H. & Squirre, A. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9, 48–52 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in this laboratory is supported by National Institutes of Health grants GM35325, the Cell Migration Consortium, IK54 GM64346 and by P60-DE13079 from the National Institute for Dental and Cranial Research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, P., Rajfur, Z., Pomorski, P. et al. Microscope-based techniques to study cell adhesion and migration. Nat Cell Biol 4, E91–E96 (2002). https://doi.org/10.1038/ncb0402-e91

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0402-e91

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing