Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Minimal activators that bind to the KIX domain of p300/CBP identified by phage display screening

Abstract

Human gene therapy approaches involving transcription factors often rely on artificial activation domains for transcriptional activation. These domains are often large (e.g., 80 amino acids for VP16), recruit multiple co-activation complexes at once, and offer no fine control over the level of transcription. In an attempt to understand the sequence and structural requirements of a minimal mammalian activator, we employed a molecular diversity approach with a peptide phage display library composed of random eight–amino acid peptides. Using the KIX domain of the mammalian co-activators p300 and CBP as target, we discovered a family of synthetic binding peptides. These peptides share significant homology with natural KIX domain ligands, and are shown to bind an overlapping, yet distinct, surface of p300/CREB-binding protein (CBP). When fused to a heterologous DNA binding domain, these synthetic peptides function as titratable, modular, and potent transcriptional activators in living cells through specific recruitment of p300/CBP, with the level of transcriptional activation proportional to the affinity of the synthetic peptide for the KIX domain. Taken together, our data demonstrate that a molecular diversity approach can be used to discover minimal, co-activator domain-specific synthetic activators, and that transcriptional activation can be modulated as desired at the level of co-activator recruitment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alignment and helicity of natural and synthetic p300/CBP binding sequences.
Figure 2: Intermolecular contacts of KBP 2.20 with the hydrophobic groove of the KIX domain of p300/CBP.
Figure 3: Confirmation of binding surface overlap with phospho-CREB and c-Myb, and precipitation of p300/CBP from whole-cell lysates using KBPs.
Figure 4: KBPs derived from phage display screening comprise a family of modular transactivators whose binding affinity correlates with the level of transcriptional activation.

Similar content being viewed by others

References

  1. Blancher, C. & Harris, A.L. The molecular basis of the hypoxia response pathway: tumour hypoxia as a therapy target. Cancer Metastasis Rev. 17, 187–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Leor, J. et al. Gene transfer and cell transplant: an experimental approach to repair a ‘broken heart’. Cardiovasc Res. 35, 431–441 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Kurtz, T.W. & Gardner, D.G. Transcription-modulating drugs: a new frontier in the treatment of essential hypertension. Hypertension 32, 380–386 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Pfeilschifter, J. & Muhl, H. Immunopharmacology: anti-inflammatory therapy targeting transcription factors. Eur. J. Pharmacol. 375, 237–245 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Bohl, D. & Heard, J.M. Transcriptional modulation of foreign gene expression in engineered somatic tissues. Cell Biol. Toxicol. 14, 83–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Sadowski, I., Ma, J., Triezenberg, S. & Ptashne, M. GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563–564 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Cousens, D.J., Greaves, R., Goding, C.R. & O'Hare, P. The C-terminal 79 amino acids of the herpes simplex virus regulatory protein, Vmw65, efficiently activate transcription in yeast and mammalian cells in chimeric DNA-binding proteins. EMBO J. 8, 2337–2342 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ptashne, M. & Gann, A. Transcriptional activation by recruitment. Nature 386, 569–577 (1997).

    Article  CAS  Google Scholar 

  9. Herr, W. The herpes simplex virus VP16-induced complex: mechanisms of combinatorial transcriptional regulation. Cold Spring Harb. Symp. Quant. Biol. 63, 599–607 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Radhakrishnan, I. et al. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741–752 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Parker, D. et al. Analysis of an activator:coactivator complex reveals an essential role for secondary structure in transcriptional activation. Mol. Cell 2, 353–359 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Paige, L.A. et al. Estrogen receptor (ER) modulators each induce distinct conformational changes in ER alpha and ER beta. Proc. Natl. Acad. Sci. USA 96, 3999–4004 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Norris, J.D. et al. Peptide antagonists of the human estrogen receptor. Science 285, 744–746 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, B.S. & Pabo, C.O. Dimerization of zinc fingers mediated by peptides evolved in vitro from random sequences. Proc. Natl. Acad. Sci. USA 96, 9568–9573 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Parker, D. et al. Role of secondary structure in discrimination between constitutive and inducible activators. Mol. Cell. Biol. 19, 5601–5607 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cardinaux, J.R. et al. Recruitment of CREB binding protein is sufficient for CREB-mediated gene activation. Mol. Cell. Biol. 20, 1546–1552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peers, B., Leonard, J., Sharma, S., Teitelman, G. & Montminy, M.R. Insulin expression in pancreatic islet cells relies on cooperative interactions between the helix loop helix factor E47 and the homeobox factor STF-1. Mol. Endocrinol. 8, 1798–1806 (1994).

    CAS  PubMed  Google Scholar 

  18. Seipel, K., Georgiev, O. & Schaffner, W. A minimal transcription activation domain consisting of a specific array of aspartic acid and leucine residues. Biol. Chem. 375, 463–470 (1994).

    CAS  Google Scholar 

  19. Cantley, L.C. The impact of genome sequencing on drug discovery. In Solid phase synthesis: a practical guide. (eds Kates, S.A. & Albericio, F.) xv–xx (Marcel Dekker, New York; 2000).

    Google Scholar 

  20. Uesugi, M., Nyanguile, O., Lu, H., Levine, A.J. & Verdine, G.L. Induced alpha helix in the VP16 activation domain upon binding to a human TAF. Science 277, 1310–1313 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Uesugi, M. & Verdine, G.L. The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2. Proc. Natl. Acad. Sci. USA 96, 14801–14806 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Briesewitz, R., Ray, G.T., Wandless, T.J. & Crabtree, G.R. Affinity modulation of small-molecule ligands by borrowing endogenous protein surfaces. Proc. Natl. Acad. Sci. USA 96, 1953–1958 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Nyanguile, O., Uesugi, M., Austin, D.J. & Verdine, G.L. A nonnatural transcriptional coactivator. Proc. Natl. Acad. Sci. USA 94, 13402–13406 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Mapp, A.K., Ansari, A.Z., Ptashne, M. & Dervan, P.B. Activation of gene expression by small molecule transcription factors. Proc. Natl. Acad. Sci. USA 97, 3930–3935 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Nagahara, H. et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat. Med. 4, 1449–1452 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse (see comments). Science 285, 1569–1572 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Kay, B.K., Winter, J. & McCafferty, J. (eds) Phage display of peptides and proteins: a laboratory manual. (Academic Press, San Diego, CA; 1996).

    Google Scholar 

  28. Frangioni, J.V. & Neel, B.G. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal. Biochem. 210, 179–187 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Behre, G., Smith, L.T. & Tenen, D.G. Use of a promoterless Renilla luciferase vector as an internal control plasmid for transient co-transfection assays of Ras-mediated transcription activation. Biotechniques 26, 24–26, 28 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Parker, D. et al. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol. Cell. Biol. 16, 694–703 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bertherat, J., Chanson, P. & Montminy, M. The cyclic adenosine 3′,5′-monophosphate-responsive factor CREB is constitutively activated in human somatotroph adenomas. Mol. Endocrinol. 9, 777–783 (1995).

    CAS  PubMed  Google Scholar 

  32. Egan, C. et al. Mapping of cellular protein-binding sites on the products of early-region 1A of human adenovirus type 5. Mol. Cell. Biol. 8, 3955–3959 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Daniel S. Kemp (MIT) for assistance with molecular modeling and peptide helicity issues, Brian K. Kay (University of Wisconsin) and Keyong Du (Joslin Diabetes Center) for many helpful discussions, David Parker for GST/KIX domain mutants and assistance with fluorescence polarization, Paul K. Brindle (St. Jude's) for c-Myb reagents, Susan Taylor (UC San Diego) for protein kinase A, Ron Evans (Salk Institute) for the G5B-luciferase plasmid, Katiri W. Wagner, Xu Mei Li, and Floretta V. Lake for technical assistance, and Ligita Stukuls and Chi Lam for administrative assistance. J.V.F. is a postdoctoral fellow of the Howard Hughes Medical Institute, and is also generously supported by the Paul D. and Lovie S. Kemp Career Development Fund for Prostate Cancer, the Hershey Family Foundation, and the Rita Leabman Memorial Fund. M.R.M. and L.C.C. (GM 56203) are supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc R. Montminy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frangioni, J., LaRiccia, L., Cantley, L. et al. Minimal activators that bind to the KIX domain of p300/CBP identified by phage display screening. Nat Biotechnol 18, 1080–1085 (2000). https://doi.org/10.1038/80280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80280

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing