Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetically Engineered Plants: Environmental Issues

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Sneep, J., A. J. T., Hendriksen and O., Holbek . Plant Breeding Perspectives. Centre for Agricultural Publishing and Documentation, Wageningen, the Netherlands. 104–224 (1979).

    Google Scholar 

  2. Lacadena, J. R. Interspecific Gene Transfer in Plant Breeding. In: Interspecific Hybridization in Plant Breeding. Proc. 8th EUCARPIA Cong. Madrid, Spain. (1977).

    Google Scholar 

  3. Evans, D. A. and C. E. Flick . Protoplast fusion: Agricultural Applications of Somatic Hybrid Plants. In: Kosuge, T., C. P. Meredith and A. Hollaender (eds). Genetic Engineering of Plants, An Agricultural Perspective. Basic Life Sciences, Vol. 26. Plenum Press, NY. 271–288 (1983).

    Chapter  Google Scholar 

  4. Sprague, G. F., D. E. Alexander, and J. W. Dudley . Plant Breeding and Genetic Engineering—A Perspective. Bioscience 30(l):17–24 (1980).

    Article  Google Scholar 

  5. Williams, M. C. Purposefully Introduced Plants That Have Become Noxious or Poisonous Weeds. Weed Sci. 28:300–305 (1980).

    Article  Google Scholar 

  6. Baker, H. G. Characteristics and modes of origin of weeds. In: Baker, H. G. and G. L. Stebbins (eds.) The Genetics of Colonizing Species. Academic Press, New York and London. 147–168 (1965).

    Google Scholar 

  7. Bunting, A. H. Some reflections on the ecology of weeds. In: Harper, J. L. (ed.) The Biology of Weeds. Blackwell Scientific Publications, Oxford. 11–26 (1959).

    Google Scholar 

  8. Salisbury Sir Edward, Weeds and Aliens. William Collins, Sons, and Co. Ltd., London. (1961).

  9. Hahn, D. H., L. W. Rooney, and C. F. Earp . Tannins and Phenols of Sorghum. Cereal Foods World 29(12):776–779 (1984).

    CAS  Google Scholar 

  10. Hurley, R. and C. R. Funk . Endophytic Fungi Can Serve As Biological Insect Control. Seed World 122:18–19 (1984).

    Google Scholar 

  11. Hoveland, C. S., S. P. Schmidt, C. C. King, Jr., J. W. Odum, E. M. Clark, J. A. McGuire, L. A. Smith, H. W. Grimes, and J. L. Holliman . Steer Performance and Association of Acremonium coeniiphialum Fungal Endophyte on Tall Fescue Pasture. Agron. J. 75(5):821–824 (1983).

    Article  Google Scholar 

  12. Bacon, C. W., J. K. Porter, J. D. Robbins, and E. S. Luttrell . Epichloe typhina from Toxic Tall Fescue Grasses. Appl. Envir. Micro. 34(5):576–581 (1977).

    CAS  Google Scholar 

  13. Harlan, J. R. The Possible Role of Weed Races in the Evolution of Cultivated Plants. Euphytica 14:173–176 (1965).

    Article  Google Scholar 

  14. Iltis, H. H. and J. F. Doebley . Taxonomy of Zea (Graminae). II. Subspecific Categories in the Zea mays complex and a generic synopsis. Amer. J. Bot. 67(6):994–1004 (1980).

    Article  Google Scholar 

  15. Wilkes, H. G. Hybridization of Maize and Teosinte in Mexico and Guatemala and the Improvement of Maize. Econ. Bot. 31:254–293 (1977).

    Article  Google Scholar 

  16. Smith, J. S. C., M. M. Goodman, and C. W. Stuber . Relationships between Maize and Teosinte of Mexico and Guatemala: Numerical Analysis of Allozyme Data. Econ. Bot. 39(1): 12–24 (1985).

    Article  CAS  Google Scholar 

  17. Harlan, J. “What is a Weed?” In: Crops and Man. Amer. Soc. Agron. Madison. 85–102 (1978).

  18. Gressel, J. Evolution of Herbicide-Resistant Weeds. In: Origins and Development of Adaptation. Pitman Books, London (Ciba Foundation Symposium 102) 73–93 (1984).

    Google Scholar 

  19. Parochetti, J. V., M. G. Schnappinger, G. F. Ryan, and H. A. Collins . Practical Significance and Means of Control of Herbicide-Resistant Weeds. In: H. M. LeBaron and J. Gressel (eds.) Herbicide resistance in plants. A Wiley-interscience Publication John Wiley & Sons. 309–312 (1982).

    Google Scholar 

  20. Holliday, R. J. and P. D. Putwain . Evolution of Resistance to Simazine in Senecio vulgaris L. Weed Res. 17:291 (1977).

    Article  CAS  Google Scholar 

  21. Price, S. C., J. E. Hill, and R. W. Allard . Genetic Variability for Herbicide Reaction in Plant Populations. Weed Science 31:652–657 (1983).

    CAS  Google Scholar 

  22. Souza Machado, V. Inheritance and Breeding Potential of Triazine Tolerance and Resistance in Plants. In: H. M. LeBaron and J. Gressel (eds.) Herbicide resistance in plants. A Wiley-interscience Publication, John Wiley & Sons. 257–275 (1982).

    Google Scholar 

  23. Jain, M., D. Aviv, D. G. Davis, E. Galun, and J. Gressel . Conferring tolerance on tobacco by hybridization with atrazine resistant Solanum nigrum. Plan Physiol. (Supplement) 67, Abstr. 866 (1981).

    Google Scholar 

  24. Pinthus, M. J., Y. Eshel, and Y. Shchori . Field and Vegetable Crop Mutants with Increased Resistance to Herbicides. Science 177:715–716 (1972).

    Article  CAS  Google Scholar 

  25. Bramel-Cox, P. J., D. J. Andrews, F. R. Bidinger, and K. J. Frey . A Rapid Method of Evaluating Growth Rate in Pearl Millet and Its Weedy and Wild Relatives. Crop Science 24:1187–1191 (1984).

    Article  Google Scholar 

  26. Beard, B. H. Registration of Helianthus Germplasm Pools III and IV. Crop Science 22:1276–1277 (1982).

    Google Scholar 

  27. Lewin, R. Can Genes Jump Between Eukaryotic Species? Science 217:42–43 (1982).

    Article  CAS  Google Scholar 

  28. Tepfer, D. Transformation of Several Species of Higher Plants by Agrobacterium rhizogenes: Sexual Transmission of the Transformed Genotype and Phenotype. Cell 37:959–967 (1984).

    Article  CAS  Google Scholar 

  29. White, F. F., G. Ghidossi, M. P. Gordon, and E. W. Nester . Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc. Natl. Acad. Sei. USA. 79:3193–3197(1982).

    Article  CAS  Google Scholar 

  30. White, F. F., D. J. Garfinkel, G. A. Huffman, M. P. Gordon, and E. W. Nester . Sequences homologous to Agrobacterium rhizogenes T-DNA in the Genomes of Uninfected Plants. Nature 301:348–350 (1983).

    Article  CAS  Google Scholar 

  31. Kidd, G. H., M. E. Davis, P. Esmailzadeh . Assessments of Future Environmental Trends and Problems: Applied Genetics—Agriculture. NIH Recombinant DNA Technical Bulletin 5(1):13–19 (1982).

  32. Cox, T. S. Introgression of Wild Germplasm into Cultivated Sorghum. Ph.D. Dissertation, Iowa State University. (1983).

  33. Frey, K. J., T. S. Cox, D. M. Rodgers, and P. Bramel-Cox . Increasing grain yields with genes from wild and weedy species. Proc. Seventeen Int. Genet. Congr., New Delhi, India. 1–10 Dec 1983 (In press).

  34. Heiser Jr., C. B. Introgression Reexamined. Botanical Review 39(4):347–366 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauptli, H., Newell, N. & Goodman, R. Genetically Engineered Plants: Environmental Issues. Nat Biotechnol 3, 437–442 (1985). https://doi.org/10.1038/nbt0585-437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0585-437

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing