Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Isolation and Characterization of an Insect Cell Line Able to Perform Complex N-Linked Glycosylation on Recombinant Proteins

Abstract

Site specific characterization of the N-glycan structures in human interferon γ (IFN-γ) derived from baculovirus-infected insect cells was performed using a combination of reverse-phase, high-performance liquid chromatography (rHPLC) and matrix assisted laser desorption time of flight (MALDI-TOF) mass spectrometry. IFN-γ was produced in two cell lines, an Estigmena acmz-derived subclone (Ea4), and Spodopterafrugiperda cells (Sf9). Both IFN-γ N-glycosylation sites (Asn25and Asn97) were characterized. Site-specific differences were observed in both the percentage of sites occupied by N-linked glycans and the types of structure associated with each site. The glycosylation capabilities and glycan processing of Sf9 were limited to the generation of chitobiose [GlcNAc2], truncated tri-mannose core [Man3GlcNAc2], or oligomannose structures. The glycosylation abilities of Ea4 cells were more extensive, producing IFN-γ molecules incorporating oligosaccharides with GlcNAc and Gal residues on the outer arms (hybrid or complex type N-glycans), as well as oligomannose N-glycans. Incorporation of an αl–6 linked fucose residue (<70% in Sf9 and <88% in Ea4) was confined to the Asn25 glycosylation site. These findings demonstrate the more extensive N-glycosylation capabilities of the E1 acrea–derived Ea4, compared to current insect cell lines used for the expression of recombinant proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Luckow, V. 1991. Cloning and expression of heterologous genes in insect cells with baculovirus vectors, p. 97–14. In: Recombinant DNA technology and applications. Prokop, A., Bajpai, R. K. and Ho, C. S. (Eds.). McGraw-Hill, Inc.

    Google Scholar 

  2. Jenkins, N. and Curling, E.M. 1994. Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb. Technol. 16: 354–364.

    Article  CAS  PubMed  Google Scholar 

  3. Butters, T.D., Hughes, R.C. and Vischer, P. 1981. Steps in the biosynthesis of mosquito cell membrane glycoproteins and the effect of tunicamycin. Biochim. Biophys. Acta. 640: 672–686.

    Article  CAS  PubMed  Google Scholar 

  4. Hsieh, P. and Robbins, P.W. 1984. Regulation of asparagine-linked processing-oligosaccharide processing in Aedes albopictusmosquito cells. J. Biol. Chem. 259: 2375–2382.

    CAS  PubMed  Google Scholar 

  5. Kretzschmar, E., Geyer, R. and Klenk, H. 1994. Baculovirus infection does not alter N-glycosylation in Spodoptera frugiperdacells. J. Biol. Chem. 375: 323–327.

    CAS  Google Scholar 

  6. Sareneva, T., Pirhonen, J., Cantell, K., Kalkkinen, N. and Julkunen, I. 1994. Role of N-glycosylation in the synthysis, dimerization and secretion of human IFN-λ. Biochem. J. 303: 831–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davidson, D.J. and Castellino, F.J. 1991. Asparagine linked oligosaccharide processing in Lepidopteran insect cells. Temporal dependence of the nature of the oligosaccharides assembled on asparagine-289 of recombinant human plasminogen produced in baculovirus infected Spodoptera frugiperda(IPLB-SF-21AE) cells. Biochemistry 30: 6167–6174.

    Article  CAS  Google Scholar 

  8. Klenk, H.D., Cramer, A., Wagner, R., Groner, A. and Kretzschmar, E. 1992. Processing of influenza virus hemagglutinin in insect cells: variations depending on the host and on coexpression with other viral proteins, p. 166–174. Proceedings of Workship on Baculovirus and Recombinant Protein Production Processes. Interlaken, Switzerland.

    Google Scholar 

  9. Davis, T.R. and Wood, H.A. 1995. Intrinsic glycosylation potential of insect cell cultures and insect larvae. In Vitro Cell. Dev. Biol.-Animal 31: 659–663.

    Article  CAS  Google Scholar 

  10. Farrar, M.A. and Schreiber, R.D. 1993. The molecular cell biology of interferon-gamma and its receptor. Ann. Rev. Immunol. 11: 571–611.

    Article  CAS  Google Scholar 

  11. Curling, M., Hayter, P., Baines, A., Bull, A., Gull, K., Strange, P. and Jenkins, N. 1990. Recombinant human interferon-gamma. Differences in glycosylation and proteolytic processing lead to heterogeneity in batch cultures. Biochem. J. 272: 333–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hayter, P.M., Curling, E.M.A., Baines, A.J., Jenkins, N., Salmon, I., Strange, P.G. and Bull, A.T. 1991. Chinese hamster ovary cell growth and IFN-λ production kinetics in stirred batch culture. Appl. Microbiol Biotechnol 34: 559–564.

    Article  CAS  PubMed  Google Scholar 

  13. Hooker, A.D., Goldman, M.H., Markham, N.H., James, D.C., Ison, A.P., Bull, A.T. &gt;, Strange, P.G., Salmon, I., Baines, A.J. and Jenkins, N. 1995. N-glycans of recombinant interferon-λ change during batch culture of Chinese hamster ovary cells. Biotech. Bioeng., 48. In press.

  14. Sutton, C., O'Neill, J. and Cottrell, J. 1994. Site specific characterisation of glycoprotein carbohydrates by exoglycosidase digestion and laser desorption mass spectrometry. Anal. Biochem. 218: 34–46.

    Article  CAS  PubMed  Google Scholar 

  15. James, D.C., Freedman, R.B., Hoare, M., Ogonah, O., Rooney, B.C., Larinov, O.A., Dobrovolsky, V.N., Lagutin, O.V. and Jenkins, N. 1995. N-Glycosylation of recombinant human interferon-λ produced in different animal expression systems. Biotechnology 13: 592–596.

    CAS  PubMed  Google Scholar 

  16. Goochee, C.F., Gramer, M.J., Anderson, D.C., Bahr, J.B. and Rasmussen, J.R. 1992. The oligosaccharides of glycoproteins: Factors affecting their synthesis and their influence on glycoprotein properties. Frontiers in Bioprocessing II, The American Chemical Society 199–230.

  17. Aeed, P.A. and Elhammer, A.P. 1994. Glycosylation of recombinant prorenin in insect cells—the insect cell line Sf9 does not express the mannose-6-phosphate recognition signal. Biochemistry 33: 8793–8797.

    Article  CAS  PubMed  Google Scholar 

  18. Castellino, F.J., Davidson, D.J., Rosen, E. and McLinden, J. 1993. Expression of human plasminogen cDNA in Lepidopteran insect cells and analysis of asparagine linked glycosylation patterns of recombinant plasminogens. Methods in Enzymology. 223: 168–185.

    Article  CAS  PubMed  Google Scholar 

  19. Jarvis, D.L. and Finn, E.E. 1995. Biochemical-analysis of the N-glycosylation pathway in baculovirus-infected lepidopteran insect cells. Virology. 212: 500–511.

    Article  CAS  PubMed  Google Scholar 

  20. Davis, T.R., Shuler, M.L., Granados, R.R. and Wood, H.A. 1993. Comparison of oligosaccharide processing among various insect-cell lines expressing a secreted glycoprotein. In Vitro Cell. & Dev. Biol.-Animal 29A: 842–846.

    Article  CAS  Google Scholar 

  21. Knepper, T.P., Arbogast, B., Schreurs, J. and Deinzer, M.L. 1992. Determination of the glycosylation patterns, disulfide linkages and protein heterogeneities of baculovirus expressed mouse interleukin-3 by mass spectometry. Biochemistry 31: 11651–11659.

    Article  CAS  PubMed  Google Scholar 

  22. Williams, P.J., Wormald, M.R., Dwek, R.A., Rademacher, T.W., Parker, G.F. and Roberts, D.R. 1991. Characterisation of oligosaccharides from Drosophila melanogaster glycoproteins. Biochem. Biophys. Acta. 1075: 146–153.

    Article  CAS  PubMed  Google Scholar 

  23. Licari, P.J., Jarvis, D.L., Bailey, J.E. 1993. Insect cell hosts for baculovirus expression vectors contain endogenous exoglycosidase activity. Biotec. Prog. 9: 146–152.

    Article  CAS  Google Scholar 

  24. Ackermann, M., Nimtz, M., Grabenhorst, E., Conradt, H.S. and Jager, V. 1995. Pilot-scale production of glycoproteins with recombinant baculoviruses-Evaluation of different host cell lines with respect to productivity, protein integrity and glycosylation. The Baculovirus and Insect Cell Gene Expression Conference. Pinehurst, NC, USA (Abstract).

  25. Honda, S., Asano, T., Kajio, T., Nakagawa, S., Ikeyama, S., Ichimori, Y., Sugino, H., Nara, K., Kakinuma, A. and Kung, H.F. 1987. Differential purification by immunoaffinity chromatography of two carboxy-terminal portion deleted derivaties of recombinant interferon gamma from E. coli. J. Interferon Res. 7: 145–154.

    Article  CAS  PubMed  Google Scholar 

  26. Nimitz, M., Lorenz, C., Conradt, H.S. and Mohr, H. 1989. Processing of carbohydrates from signal glycoproteins secreted by human T lymphocytes: influence of induction protocol and cell differentiation state. International Symposium on Glycoconjugates 10: 239 (Abstract).

  27. Picard, V., Ersdalbadju, E. and Block, S.C. 1995. Partial glycosylation of antithrombin-III asparagine-135 is caused by the serine in the 3rd position of its N-glycosylation consensus sequence and is responsible for production of the beta-antithrombin-III isoform with enhanced heparin affinity. Biochemistry 34: 8433–8440.

    Article  CAS  PubMed  Google Scholar 

  28. Davidson, D.J., Fraser, M.J. and Castellino, F.J. 1991. Alpha-mannosidase catalyzed trimming of high mannose glycans in non-infected and baculovirus infected Spodoptera frugiperdacells. Biochemistry 30: 9812–9815.

    Google Scholar 

  29. Ren, J.X., Bretthauer, R.K. and Castellino, F.J. 1995. Purification and properties of golgi-derived (alpha-1,2) mannosidase from baculovirus infected lepidopteran insect cells (IPLB-Sf21AE) with preferential activity towards mannose6-N-acetylglucosamine2. Biochemistry 34: 2489–2495.

    Article  CAS  PubMed  Google Scholar 

  30. Altaian, F. and Marz, L. 1995. Processing of asparagine-linked oligosaccharides in insect cells—evidence for alpha mannosidase II. Glycoconjugate J. 12: 150–155.

    Article  Google Scholar 

  31. Altaian, E., Kornfeld, G., Dalik, T., Staudacher, E. and Glössl, J. 1993. Processing of asparagine linked oligosaccharides in insect cells—N-acetylgluc-saminyltransferase I and II activities in cultured lepidopteran cells. Glycobiology 3: 619–625.

    Article  Google Scholar 

  32. Grabenhorst, E., Hofer, B., Nimtz, M., Jager, V. and Conradt, H.S. 1993. Biosynthesis and secretion of human interleukin-2 glycoprotein variants from baculovirus infected Sf21 cells: characterization of polypeptides and post-translational modifications. Eur. J. Biochem. 215: 189–197.

    Article  CAS  PubMed  Google Scholar 

  33. Davidson, D.J. and Castellino, F.J. 1991. Structures of the asparagine-289 linked oligosaccharides assembled on recombinant human plasminogen expressed in Mamestra brassicae cell line. Biochemistry 30: 6689–6696.

    Article  CAS  PubMed  Google Scholar 

  34. Flesher, A.R., Marzowski, J., Wang, W.C. and Raff, H.V. 1995. Fluorophore labeled glycan analysis of immunoglobulin fusion proteins: correlation of oligosaccharide content with in vivo clearance profile. Biotec. Bioeng. 46: 399–407.

    Article  CAS  Google Scholar 

  35. Lodish, H.F. 1991. Recognition of complex oligosaccharides by the multi-sub-unit asialoglycoprotein receptor. TIBS 16: 374–377.

    CAS  PubMed  Google Scholar 

  36. Mattox, S., Walrath, K., Ceiler, D., Smith, D.F. and Cummings, R.D. 1993. A solid-phase assay for the activity of CMPNeuAc: Gal bl-4GlcNac-R α-2,6 sia-lyltransferases. Anal. Biochem. 206: 430–436.

    Article  Google Scholar 

  37. Roth, J., Kempf, A., Reuter, G., Schauer, R. and Gehring, W.J. 1992. Occurrence of sialic acids in Drosophila melanogaster. Science 256: 673–675.

    Article  CAS  PubMed  Google Scholar 

  38. Minch, S.L., Kallio, P.T. and Bailey, J.E. 1995. Tissue plasminogen activator coexpressed in Chinese Hamster Ovary cells with alpha(2,6) sialyltransferase contain NeuAc-alpha(2,6)-beta(l,4)GlcNAc linkages. Biotec. Prog. 11: 348–351.

    Article  CAS  Google Scholar 

  39. Altman, E., Tretter, V., Kubelka, V., Staudacher, E., Marz, L. and Becker, W.M. 1993. Fucose in alpha 1–3 linkage to the N-glycan core forms an aller-genic epitope that occurs in plant and insect glycoproteins. Glyconjugate J. 10: 310.

    Article  Google Scholar 

  40. Chazenbalk, G.D. and Rapoport, B. 1995. Expression of the extracellular domain of the thyrotropin receptor in the baculovirus system using a promoter active earlier than the polyhedrin promoter-implications for the expression of functional highly glycosylated proteins. J. Biol. Chem. 270: 1543–1549.

    Article  CAS  PubMed  Google Scholar 

  41. Jarvis, D.L. and Summers, M.D. 1989. Glycosylation and secretion of human-tissue plasminogen-activator in recombinant baculovirus-infected insect cells. Mol. Cell. Biol. 9: 214–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Summers, M.D. and Smith, G.E. 1978. A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures. Texas Agricultural Experiment Station Bulletin No. 1555.

  43. Granados, R.R. and Naughton, M. 1975. Development of Amsacta mooreiEntomopoxvirus virus in Ovarian and Hemocyte cultures of Estigmena acrea larvae. Intervirology 5: 62–68.

    Article  CAS  PubMed  Google Scholar 

  44. James, D.C., Freedman, R.B., Hoare, M. and Jenkins, N. 1994. High resolution separation of recombinant human IFN-λ glycoforms by micellar electrokinetic capillary chromatography. Anal. Biochemistry 222: 315–322.

    Article  CAS  Google Scholar 

  45. Kenney, A., Goulding, L. and Hill, C. 1988. The design, purification and use of immunopurification reagents, p. 99–11. In: Methods in Molecular Biology, Vol. 3, New Protein Techniques. Pulman Press Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogonah, O., Freedman, R., Jenkins, N. et al. Isolation and Characterization of an Insect Cell Line Able to Perform Complex N-Linked Glycosylation on Recombinant Proteins. Nat Biotechnol 14, 197–202 (1996). https://doi.org/10.1038/nbt0296-197

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0296-197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing