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important roles in mammalian physiol-
ogy, growth and behaviour, and numerous 
diseases are associated with imprinting 
defects. Beyond their function, imprinted 
genes are appreciated as a useful and important 
model for the study of epigenetic regulation 
of gene expression, because they provide a 
natural system in which epigenetic modifica-
tions are the main determinants of a functional 
state.

Emily Niemitz, Associate Editor, 
Nature Genetics
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Nucleosomes are the basic building blocks 
of the eukaryotic nucleus, packaging 
DNA into the chromatin of individual 
chromosomes. The nucleosome consists of 
a histone octamer — a tetramer of histones 
H3–H4 and two dimers of histones H2A–
H2B —  around which the DNA string is 
wrapped approximately 1.8 times.

In vitro studies in the late 1970s 
with Escherichia coli RNA polymerase 
on bacteriophage DNA showed that 
transcription can proceed through regions 
of DNA organized into nucleosomes. 
Subsequent in vitro findings were to 
reveal that the transcription of other 
DNA templates was repressed by histones, 
especially when nucleosome density 
was increased. However, many believed 
that chromatin was transparent to RNA 
polymerase in living cells. Therefore, the 
idea that nucleosomes might be regulating 
gene transcription was generally dismissed 
by scientists in the 1980s, who were 
preoccupied with the ever-growing list of 
cis-acting sequences and associated factors 
that controlled gene transcription. 

An important hint that nucleosomes 
had a function other than packaging DNA 
came from Kornberg and colleagues, who 
found that nucleosomes assembling on 
gene promoters would themselves block 
initiation of transcription in vitro. 

Scientists, however, remained sceptical 
and continued to ignore chromatin until  
a year later, when Han and Grunstein 
showed that nucleosome loss, through 
histone depletion, resulted in the 
increased transcription of numerous 
genes in yeast. This provided the first 
in vivo evidence that nucleosomes can 
repress gene activity. So, as interest grew 
in understanding how they regulated 
transcription, nucleosomes found 
themselves back in the test tube, with their 
individual histone components being 
chopped up and examined. 

The Grunstein group laid the first 
cornerstone by showing that histone tails 
had specific functions. Studies on histone 
H4 revealed that its tail is dispensable for 
yeast growth, but is required to repress the 
activation of specific mating loci through 
the binding of a repressor protein. The same 
group showed that the H4 tail also had a 
gene-activating function and that histone 
modifications — namely acetylation at 
specific residues — were required for gene 

transcription. Now, of course, the post-
translational modification of histone tails 
and their binding to regulatory proteins 
is a fundamental theme in transcriptional 
regulation (see Milestones 19 and 22).

So, what was once considered ‘cellophane 
wrapping’ now constitutes the ‘nuts and 
bolts’ of the transcription-regulatory 
apparatus. Science and the persistence of 
certain visionaries has once again proved 
that appearances can be deceptive, and 
that you might have to dig a little deeper 
and stare a little longer to uncover the 
function that lies at the core. 

Myrto Raftopoulou, 
Associate Editor, Nature Cell Biology
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