
MINI REVIEW

Mechanism of human somatic reprogramming to iPS cell
Rika Teshigawara, Junkwon Cho, Masahiro Kameda and Takashi Tada

Somatic reprogramming to induced pluripotent stem cells (iPSC) was realized in the year 2006 in mice, and in 2007 in
humans, by transiently forced expression of a combination of exogenous transcription factors. Human and mouse iPSCs
are distinctly reprogrammed into a ‘primed’ and a ‘naïve’ state, respectively. In the last decade, puzzle pieces of somatic
reprogramming have been collected with difficulty. Collectively, dissecting reprogramming events and identification of
the hallmark of sequentially activated/silenced genes have revealed mouse somatic reprogramming in fragments, but
there is a long way to go toward understanding the molecular mechanisms of human somatic reprogramming, even with
developing technologies. Recently, an established human intermediately reprogrammed stem cell (iRSC) line, which has
paused reprogramming at the endogenous OCT4-negative/exogenous transgene-positive pre-MET (mesenchymal-to-
epithelial-transition) stage can resume reprogramming into endogenous OCT4-positive iPSCs only by change of culture
conditions. Genome-editing-mediated visualization of endogenous OCT4 activity with GFP in living iRSCs demonstrates
the timing of OCT4 activation and entry to MET in the reprogramming toward iPSCs. Applications of genome-editing
technology to pluripotent stem cells will reshape our approaches for exploring molecular mechanisms.
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REPROGRAMMING OF SOMATIC CELLS
Reprogramming somatic cells into induced pluripotent stem
cells (iPSCs), which possess unique properties of self-renewal
and differentiation into multiple cell lineages, is achieved by
transduction using a defined set of transcription factors: Oct4
(Pou5f1), Sox2, Klf4, and c-Myc (OSKM) in mice,1,2 and
humans.3,4 The success of iPSC generation opens a way to
produce patient-specific pluripotent stem cells with less
ethical issues than embryonic stem cells (ESCs) generated
from fertilized pre-implantation embryos. Personalized iPSCs
are expected to contribute to the exploration of cure and
cause of diseases, drug screening, and tailor-made regenera-
tive medicine. iPSC generation methodology has improved
with different delivery systems, including non-integrating
vectors, deletion after integration, DNA-free transduction,
and chemical induction.5–11 Furthermore, novel approaches
for iPSC production have been developed, including combi-
nations of alternative transcription factors.12 In addition to
those, reprogramming-susceptible cell types have been
identified.13–15 Even with studious effort for methodological
and technical improvements, the efficiency of reprogramming
remains ~ 0.1% in humans, and ~ 1.0% in mice.16 Mechan-
isms of somatic reprogramming have important implications
for iPSC applications. Furthermore, iPSCs could be of great

use in exploring molecular mechanisms of many diseases and
embryonic development as models. However, the low
efficiency and stochastic nature of reprogramming hinders
the understanding of reprogramming mechanisms.

MECHANISMS OF REPROGRAMMING IN MICE
In mice, the specific order of reprogramming events has been
determined as (i) activation of alkaline phosphatase, (ii) silen-
cing of somatic-specific expression, (iii) expression of SSEA1,
and (iv) progressive silencing of exogenous genes with conco-
mitant upregulation of endogenous Oct4 and Nanog17–19

(Figure 1a). Nanog is a key player of the stem cell regulatory
network critical for acquiring a pluripotent state.20 EpCAM,
c-Kit, and PECAM1 were identified as other surface markers
of early, intermediate, and late genes of SSEA1-positive cells,
respectively.21,22 Information on roadblock genes during
reprogramming and stage-specific markers for enrichment
of intermediately reprogrammed cells prone to forming iPSCs
is being accumulated using several advanced technologies.

In addition to the marker genes, pluripotency-associated
mmu (Mus Musculus) -microRNAs (miRNAs) are sequen-
tially expressed, and implicated with induction, maturation,
and stabilization of unique characteristics of iPSCs23–25

(Figure 1a). In chromatin reprogramming, pioneer
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transcription factors bind directly to condensed chromatin
and elicit a series of chromatin remodeling events, including
histone modification of H3 lysine 4 and 27 (ref. 26) that lead
to opening of chromatin during cell division, which creates
opened chromatin situation that other transcription factors
are readily accessible.27 In cell cycle reprogramming, rapid
proliferation with a characteristic cell cycle structure of short
G1- and G2-gap phases is signature to iPSCs accompanying
self-renewal and pluripotency.28

MET (mesenchymal-to-epithelial transition), which is the
hallmark critical event toward the derivation of iPSCs from
mouse embryonic fibroblasts (MEFs), occurs at an early stage
of reprogramming.23,29,30 MET is characterized by upregulation
of epithelial genes, E-Cadherin, Cdh1, Epcam, and epithelial-
associated mmu-miRNA-200 family, and down-regulation of
mesenchymal genes, Snail1/2, Zeb1/2, and N-Cadherin.31–33

Exogenous Oct4 and Sox2 bind to the promoter regions of
mmu-miRNA-141/200c and the mmu-miRNA-200a/b/429
cluster, respectively, and induce transcription activation of the
mmu-miRNA-200 family (miRNA-200s).29

MET is driven by a strong bone morphogenetic protein
(BMP) response through induction of mmu-miRNA-200s
and 205 according to the BMP-miRNA-MET pathway.23

Repression of mmu-miRNA-200s with specific inhibitors
results in repression of MET and iPSC generation. Further-
more, the effects of mmu-miRNA-200s and 205 were blocked

by Zeb2 overexpression. Collectively, the mmu-miRNA-200/
Zeb2 pathway critically functions in promoting MET at the
early stage of somatic reprogramming.29,34 Moreover, MET is
controlled under the orchestrated regulation of epigenetic
modification modulated, in part, by H3K36 demethylases
Jhdm1a/1b35 and H3K79 methylase Dot1L.36 Consequently,
MET accompanied by changes in morphology from the
somatic to pluripotent type cell induces expression pattern
changes in several thousands of genes.23,24

MECHANISMS OF REPROGRAMMING IN HUMANS
Human iPSC colonies exhibit characteristic flat-shaped
morphology, which is clearly distinct from mouse iPSC
colonies that exhibit bowl-shaped morphology. Mouse iPSCs
are reprogrammed into a ‘naïve’ state similar to the state of
mouse embryonic stem cells (ESCs), whereas human iPSCs
are in a ‘primed’ state similar to the state of human ESCs, and
mouse Epistem cells (EpiSCs)37,38 (Figure 1b). Mouse ESCs,
but not mouse EpiSCs, are germline-competent in blastocyst-
injection-mediated chimeras. Notably, ‘primed’-state human
and ‘naïve’-state mouse iPSCs make differential responses in
mouse ground state culture conditions with N2B27+2i+LIF
medium.39,40 Distinct pluripotent states between human and
mouse iPSCs are also demonstrated by X-chromosome
reactivation of female somatic cell reprogramming.41 Collec-
tively, the final cell fate by somatic reprogramming through
forced expression of the same exogenous OSKM transcription
factors is distinctive between humans and mice (Figure 1a
and b). Thus, it is predicted that parts of the reprogramming
process are shared with humans and mice, whereas others are
unique to humans or mice.

Indeed, partially diverged interactions of pluripotency-
associated miRNAs and the target mRNAs between humans
and mice have been summarized.25 This is consistent with the
divergence of sequential reprogramming events between
humans and mice. In mice, MET occurs early in reprogram-
ming of MEFs to iPSCs, which precedes the activation of
endogenous Oct4;21,23 however, in humans, MET occurs at a
later stage of reprogramming with the same timing of
endogenous OCT4 activation (Figures 1a and b). It is likely
that MET is a checkpoint for entry into a ‘primed’ state of
pluripotency, whereas activation of an OCT4/Oct4 is a key
step for commitment to further cellular reprogramming
through composing OCT4/Oct4-induced pluripotency mole-
cular network. In this context, human iPSCs acquired OCT4-
induced pluripotency under a ‘primed’ state prior to
conversion to a ‘naïve’ state. This implies that, in mice, a
‘primed ‘ state is generated at a much earlier stage, with
additional steps required prior to Oct4-induced pluripotency.
MET is an event separable from activation of endogenous
OCT4/Oct4, as shown by differential timing of entry to MET
between human and mouse reprogramming.

The generation of human ‘naïve’ iPSCs, which demon-
strated molecular characteristics and functional properties
similar to mouse ESCs/iPSCs, was reported with the
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Figure 1 Sequential events, changes of gene and microRNA expression
in reprogramming mouse (a) and human (b) somatic cells to induced
pluripotent cells (iPSCs). Mesenchymal-to-epithelial transition (MET) occurs
at differential timing in the road of reprogramming. Duration of
expression of exogenous reprogramming factors, Oct4, Sox2, Klf4, and
c-Myc (OSKM) is indicated by black arrow. Expression of endogenous
Oct4/OCT4 is indicated by the green rectangle. Derivation of timing of
intermediately reprogrammed stem cells (iRSCs) in the reprogramming
process is shown by the pink triangle in humans (b).
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chemically defined culture conditions, NHSM (naïve human
stem cell medium).42 Conversion from a ‘primed‘ state to a
‘naïve’ state is facilitated by forced expression of exogenous
Klf4 under ground state culture conditions in mice.43

Furthermore, it was revealed that the pluripotency-
associated hsa (Homo sapiens) -miRNA-290/302 family of
microRNAs regulates the transition of ESCs from a ‘naïve’ to
‘primed’ state of pluripotency.44 However, in humans,
mechanisms involved in ‘primed-to-naïve’ conversion are
largely unknown.

In human ESCs, OCT4, SOX2, and NANOG, which play
essential roles in somatic reprogramming to iPSCs, co-occupy
a substantial portion of more than 300 target genes with
collaboration to form regulatory circuitry consisting of
autoregulatory and feedforward loops,45 suggesting that
appropriate transcription of OCT4, SOX2, and NANOG is
required to stabilize a pluripotency molecular network for
facilitating the maturation of the somatic reprogramming
process toward iPSC generation. Prior to stabilization of the
pluripotency network through MET and endogenous OCT4

activation in human reprogrammed cells, a ‘primed’ plur-
ipotency competent state may be induced by forced expres-
sion of c-Myc and Klf4 as demonstrated by mouse
reprogramming cells.30 Recently, several ‘naïve’-specific, but
not ‘primed’-specific, cell surface marker proteins were
demonstrated by comprehensive profiling of cell surface
proteins by flow cytometry in ‘naïve’ and ‘primed’ human
pluripotent stem cells (PSCs).46 It is unclear whether
stabilization of human iPSCs under a ‘primed’ state but not
a ‘naïve’ state resulted from passing through a transient ‘naïve’
state during reprogramming. Newly identified ‘naïve’-specific
marker proteins could facilitate to define the human pre-iPSC
and iPSC state in the progress of somatic reprogramming.

EXPLORING REPROGRAMMING MECHANISMS WITH AN
INTERMEDIATELY REPROGRAMMED STEM CELL LINE
In mice, intermediately reprogrammed cells characterized by
silencing somatic genes, activated SSEA1, and the potential of
conversion to iPSCs were predicted as a transient cell
population, whereas partially reprogrammed cells
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Figure 2 (a) Sequential changes of cell morphology from human TIG fibroblast cell, intermediately reprogrammed stem cell (iRSC), to induced
pluripotent stem cell (iPSC) in somatic reprogramming. OSKM; reprogramming factor, Oct4, Sox2, Klf4, and c-Myc. (b) CRISPR/Cas9-mediated genome
editing of the endogenous OCT4 gene in human iRSCs to visualize the activity of OCT4 by fluorescence marker, GFP (Green Fluorescence Protein) in the
reprogramming process of iRSCs to iPSCs. MET; mesenchymal-to-epithelial transition.
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characterized by expression of reprogramming transgenes,
activated proliferation genes, silencing of pluripotency genes,
and aberrant expressing lineage genes were established as
several endogenous Oct4-negative pre-iPSC lines without
potential of conversion to iPSCs.2,47,48 In humans, partially
reprogrammed iPSCs resumed reprogramming by upregula-
tion of KLF4,49 and pre-iPSC-like cell lines were established as
cancer stem cell lines.50 Metabolome profiling demonstrated
that human partially reprogrammed iPSCs shared only 74%
similarly expressed metabolites with human ESCs,51 indicat-
ing that transcriptome of partially reprogrammed stem cells is
considerably different from that of ESCs. Therefore, establish-
ment of iPSC lines makes no promise to establish stable lines
of human partially reprogrammed iPSCs. Under such a state,
derivation of human intermediately reprogrammed stem cells
(iRSCs) as stable lines was unexpected.

Human iRSCs, established from the reprogrammed fetal
lung fibroblast cell lines, TIG1 and TIG3, by retroviral
transduction of OSKM reprogramming factors were char-
acterized by silencing of somatic genes, activated reprogram-
ming transgenes, self-renewal ability, activated SSEA4, and
potential of conversion to iPSCs52 (Figures 1b and 2a).
Notably, iRSCs efficiently resumed the reprogramming
process toward iPSC generation under specified culture
conditions at a high cell density. Molecular stimuli involved
in resuming reprogramming from iRSC to iPSC are
elusive. It has been reported that high cell density is
a potent negative regulator of cell cycle and expression of
genes including retrotransposon,53 implying that exogenous
OSKM genes were silenced as a consequence of high cell
densitiy of iRSCs. iRSCs were marked by endogenous
expression of core pluripotency factors, SOX2 and NANOG
but not OCT4, in addition to exogenous OSKM reprogram-
ming factors. Endogenous OCT4 was activated along with
entry to MET and silencing of exogenous transgenes. GFP
(green fluorescence protein) knockin to the endogenous
OCT4 locus by CRISPR/Cas9-mediated genome
editing-enabled visualization of the OCT4 activation kinetics
in living reprogramming cells transit from iRSCs to iPSCs
(Figure 2b). It was revealed that activation of endogenous
OCT4 simultaneously occurring with silencing of exogenous
OSKM reprogramming factors is induced prior to entry
into MET.

Interestingly, time-lapse analyses of endogenous OCT4
activity demonstrated that OCT4-positive reprogramming
cells created OCT4-positive and negative daughter cells
through asymmetric cell division soon after OCT4 activation,
while OCT4-positive cells enabled symmetric cell division to
form two daughter cells with the same pluripotent
identity in larger growing colonies.52 It is likely that
instability of endogenous OCT4 is linked to the cell
characteristics of symmetric or asymmetric division. It has
been debated whether reprogramming entails a hierarchic or
stochastic process.54 Once OSKM factors are silenced
and endogenous OCT4 is activated in a stochastic manner,

further reprogramming is proposed to progress in a
hierarchical manner.12 Contrary to this, it was proposed
that endogenous Oct4 activation is insufficient for
progression of subsequent events in mouse somatic
reprogramming.55,56 In the maturation process of iRSC-to-
iPSC conversion, endogenous OCT4 activation is essential for
iPSC generation, but not sufficient for determining cell fate to
be iPSCs.

It is controversial whether the reprogramming pathway
from somatic cell to iPSC is a single pathway. This is linked to
hypotheses as to whether the reprogramming process occurs
in a hierarchic or stochastic manner. It has been proposed, in
mice, that the pluripotency spectrum can encompass multi-
ple, unique cell states, including an alternative somatic
reprogramming path to iPSCs through a Nanog-positive
transient state, in addition to the preconceived Nanog-
negative transient state.57,58 Collectively, reprogramming
mechanisms of cellular reprogramming from somatic cells
to iPSCs are more complicated rather than those we
expected when OSKM-mediated somatic reprogramming
was discovered.

iRSC APPLICATIONS
Understanding of molecular mechanisms involved in human
somatic reprogramming will not directly contribute to curing
specific diseases of patients, but will be useful for investigating
medical biology, including human embryonic development,
anti-aging, cell physiology, and epigenetics. To do so,
application of genetic manipulation to human iPSCs, which
is desirable for repair of genetic mutations and deficiencies, is
one of the crucial approaches. Single-cell sub-cloning is an
inevitable process for genetic manipulation. However,
dissociation-induced pro-apoptosis takes place in subcultures
of iPSCs,59 even using the anti-apoptosis molecule, Rho-
associated kinase (ROCK) inhibitor Y-27632.60 An advanta-
geous property of iRSC use is that they are readily expandable
from a single cell after conventional gene modifications.
Afterwards, reprogramming from gene-manipulated iRSCs to
iPSCs can be feasibly resumed by the change of culture
conditions. iRSCs will be a powerful cell source for applying
recently developed genome-editing technologies.61,62 Further-
more, iRSC-based identification of marker genes modulating
different reprogramming stages would greatly facilitate the
understanding of epigenetic events that occur at each stage by
enabling enrichment of subpopulations of reprogramming
cells. Integration of a inducible gene expression/repression
control system enabled by genetic modifications with iRSCs
could help for exploring genes responsible for conversion of
iRSCs to ‘naïve’ iPSCs in the reprogramming. Only a part of
the reprogramming mechanism is understood in humans.
Further investigation of mechanisms of somatic reprogram-
ming by developing new technologies, and integration with
new scientific fields may shed light on the fundamental
question of ‘what is life’.
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