Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Note
  • Published:

Assessment of four experimental models of hyperlipidemia

Abstract

Various animal models of hyperlipidemia are used in research. Four rodent hyperlipidemia experimental models are examined in this study: three chronic hyperlipidemia models based on dietary supplementation with lipid or sucrose for 3 months and one acute hyperlipidemia model based on administration of the nonionic surfactant poloxamer. Neither lipid supplementation nor sucrose supplementation in Wistar rats was effective for establishing hyperlipidemia. Combining both lipid and sucrose supplementation in BALB/c mice induced hypercholesterolemia, as reflected in a considerable increase in blood cholesterol concentration, but did not produce an increase in blood triglyceride concentration. Poloxamer administration in C57BL/J6 mice produced increases in blood cholesterol and triglyceride concentrations. The authors conclude that supplementation of both lipid and sucrose in BALB/c mice was the most effective method for developing chronic hypercholesterolemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of lipid supplementation on body weight in Wistar rats.
Figure 2: Effects of sucrose supplementation on body weight in Wistar rats.
Figure 3: Effects of lipid and sucrose supplementation on body weight in BALB/c mice.

Similar content being viewed by others

References

  1. Palou, A., Bonet, M., Picó, C. & Rodríguez, A. Nutrigenómica y obesidad. Rev. Med. Univ. Navarra 48, 36–48 (2004).

    CAS  PubMed  Google Scholar 

  2. Álvarez-Castro, P., Sangiao-Alvarellos, S., Brandón-Sandá, I. & Cordido, F. Función endocrina en la obesidad. Endocrinol. Nutr. 58, 422–432 (2011).

    Article  Google Scholar 

  3. Elliott, S., Keim, N., Stern, J., Teff, K. & Havel, P. Fructose, weight gain, and the insulin resistance syndrome. Am. J. Clin. Nutr. 76, 911–922 (2002).

    Article  CAS  Google Scholar 

  4. Basciano, H., Federico, L. & Adeli, K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr. Metab. (Lond.) 2, 5 (2005).

    Article  Google Scholar 

  5. Joven, J. et al. The results in rodent models of atherosclerosis are not interchangeable: the influence of diet and strain. Atherosclerosis 195, e85–e92 (2007).

    Article  CAS  Google Scholar 

  6. Fuster, J., Castillo, A., Zaragoza, C., Ibáñez, B. & Andrés, V. Animal models of atherosclerosis. Progr. Mol. Biol. Transl. Sci. 105, 1–23 (2012).

    Article  CAS  Google Scholar 

  7. Lovati, M., West, C., Sirtori, C. & Beynen, A. Dietary animal proteins and cholesterol metabolism in rabbits. Br. J. Nutr. 64, 473–485 (1990).

    Article  CAS  Google Scholar 

  8. Brandsch, C., Shukla, A., Hirche, F., Stangl, G.I. & Eder, K. Effect of proteins from beef, pork, and turkey meat on plasma and liver lipids of rats compared with casein and soy protein. Nutrition 22, 1162–1170 (2006).

    Article  CAS  Google Scholar 

  9. Rabot, S. et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 24, 4948–4959 (2010).

    Article  CAS  Google Scholar 

  10. Buettner, R., Schölmerich, J. & Bollheimer, L.C. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 15, 798–808 (2007).

    Article  CAS  Google Scholar 

  11. Tan, C. et al. Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet. Diabetes 60, 464–476 (2011).

    Article  CAS  Google Scholar 

  12. Gil-Hernández, A., Ramírez-Tortosa, M., Aguilera-García, M. & Mesa-García, M. Modelos experimentales de enfermedad cardiovascular. Nutrición Hospitalaria 22, 169–177 (2007).

    PubMed  Google Scholar 

  13. González, Y., Sánchez, C., Castillo, O., Tamayo, M. & Verdecía, B. Modelo experimental de hiperlipidemia con el empleo de caseína y grasas saturadas. Medicentro 14, 269–275 (2010).

    Google Scholar 

  14. Jürgens, H. et al. Consuming fructose-sweetened beverages increases body adiposity in mice. Obes. Res. 13, 1146–1156 (2005).

    Article  Google Scholar 

  15. Rippe, J. & Angelopoulos, T. Sucrose, high-fructose corn syrup, and fructose, their metabolism and potential health effects: what do we really know? Adv. Nutr. 4, 236–245 (2013).

    Article  CAS  Google Scholar 

  16. D'Alessandro, M.E., Chicco, A., Basabe, J.C. & Lombardo, Y.B. Relación lípidos y resistencia insulínica en un modelo experimental de dislipemia inducido por dieta rica en sacarosa. Rev. Argent. Endocrinol. Metab. 43, 3–15 (2006).

    CAS  Google Scholar 

  17. Pedraza, L.G.G. Evaluación de jarabe de maguey mezcalero (Agave salmiana) en ratas diabéticas. Thesis. (Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico, 2006).

  18. Fortino, M.A. Intervenciones nutricionales en un modelo experimental de dislipemia y resistencia insulínica inducido por ingesta prolongada de dieta rica en sacarosa. Efecto de la sustitución parcial del contenido de sacarosa dietaria. Thesis. (Universidad Nacional del Litoral, Santa Fe, Argentina, 2007).

  19. Lomba, A. et al. Obesity induced by a pair-fed high fat sucrose diet: methylation and expression pattern of genes related to energy homeostasis. Lipids Health Dis. 9, 60 (2010).

    Article  Google Scholar 

  20. Fonseca, V. et al. Effects of a high-fat-sucrose diet on enzymes in homocysteine metabolism in the rat. Metabolism 49, 736–741 (2000).

    Article  CAS  Google Scholar 

  21. Uriarte, G., Paternain, L., Milagro, F., Martínez, J. & Campion, J. Shifting to a control diet after a high-fat, high-sucrose diet intake induces epigenetic changes in retroperitoneal adipocytes of Wistar rats. J. Physiol. Biochem. 69, 601–611 (2013).

    Article  CAS  Google Scholar 

  22. Khanna, A.K., Chander, R., Singh, C., Srivastava, A.K. & Kapoor, N.K. Hypolipidemic activity of Achyranthes aspera Linn in normal and triton-induced hyperlipidemic rats. Indian J. Exp. Biol. 30, 128–130 (1992).

    CAS  PubMed  Google Scholar 

  23. Tillán-Capó, J., Gómez-Mirabal, J. & Menéndez-Castillo, R. Efecto hipolipemiante de Aloe vera L. Rev. Cubana Plant. Med. 10 (2005).

  24. Megallia, S., Aktanb, F., Davies, N. & Roufogalis, B. Phytopreventative anti-hyperlipidemic effects of gynostemma pentaphyllum in rats. J. Pharm. Pharm. Sci. 8, 507–515 (2005).

    Google Scholar 

  25. Singh-Joy, S. & McLain, V. Safety assessment of poloxamers 101, 105, 108, 122, 123, 124, 181, 182, 183, 184, 185, 188, 212, 215, 217, 231, 234, 235, 237, 238, 282, 284, 288, 331, 333, 334, 335, 338, 401, 402, 403, and 407, poloxamer 105 benzoate, and poloxamer 182 dibenzoate as used in cosmetics. Int. J. Toxicol. 27 (suppl. 2), 93–128 (2007).

    Google Scholar 

  26. Wood, S.C., Seeley, R.J., Rushing, P.A., D'Alessio, D. & Tso, P. A controlled high-fat diet induces an obese syndrome in rats. J. Nutr. 133, 1081–1087 (2003).

    Article  Google Scholar 

  27. Alfonso Perez, C. & Ortiz, H. Efectos del aceite crudo de palma en los lípidos plasmáticos de conejos. Rev. Facultad Med. (Caracas) 24, 75–79 (2001).

    Google Scholar 

  28. Karaji-Bani, M., Montazeri, F. & Hashemi, M. Effect of palm oil on serum lipid profile in rats. Pakistan J. Nutr. 5, 234–236 (2006).

    Article  Google Scholar 

  29. Scorza, T., Martucci, A. & Torrealba de Ron, A.T. Palm oil derivatives with different concentration of palmitic acid and antioxidants. Effects upon plasmatic lipids and platelet aggregation. Arch. Latinoam. Nutr. 49, 20–25 (1999).

    CAS  PubMed  Google Scholar 

  30. Ros, E. Intestinal absorption of triglyceride and cholesterol. Dietary and pharmacological inhibition to reduce cardiovascular risk. Atherosclerosis 151, 357–379 (2000).

    Article  CAS  Google Scholar 

  31. Novelli, E.L. et al. Anthropometrical parameters and markers of obesity in rats. Lab. Anim. 41, 111–119 (2007).

    Article  CAS  Google Scholar 

  32. Ayala, I. et al. Modelos animales experimentales de enfermedad dehígado graso y síndrome metabólico. An. Vet. (Murcia) 24, 5–16 (2008).

    Google Scholar 

  33. Vásquez-Machado, M. & Ulate-Montero, G. Regulación del peso corporal y del apetito. Acta Médica Costarricense 52, 79–89 (2010).

    Google Scholar 

  34. Kok, N., Roberfroid, M. & Delzenne, N. Dietary oligofructose modifies the impact of fructose on hepatic triacylglycerol metabolism. Metabolism 45, 1547–1550 (1996).

    Article  CAS  Google Scholar 

  35. Roglans, N., Vilà, L. & Laguna, J. Reducción en la actividad de transactivación y transrepresión de PPAR en un modelo experimental. Clin. Invest. Arterioscl. 19, 1–12 (2007).

    Google Scholar 

  36. Mayes, P.A. Intermediary metabolism of fructose. Am. J. Clin. Nutr. 58, 754S–765S (1993).

    Article  CAS  Google Scholar 

  37. Stanhope, K. Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annu. Rev. Med. 63, 329–343 (2012).

    Article  CAS  Google Scholar 

  38. Oron-Herman, M. et al. Metabolic syndrome: comparison of the two commonly used animal models. Am. J. Hypertens. 21, 1018–1022 (2008).

    Article  CAS  Google Scholar 

  39. Satapathy, S.K. et al. Galantamine alleviates inflammation and other obesity-associated complications in high-fat diet–fed mice. Mol. Med. 17, 599–606 (2011).

    Article  CAS  Google Scholar 

  40. Xu, X. et al. Insulin signaling regulates fatty acid catabolism at the level of CoA activation. PLoS Genet. 8, e1002478 (2012).

    Article  CAS  Google Scholar 

  41. Wasan, K.M. et al. Poloxamer 407-mediated alterations in the activities of enzymes regulating lipid metabolism in rats. J. Pharm. Pharm. Sci. 6, 189–197 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yuliet González Madariaga, Head of Foreign Language Department of Central University Marta Abreu of Las Villas, for her help with the English translation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yisel González Madariaga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madariaga, Y., Cárdenas, M., Irsula, M. et al. Assessment of four experimental models of hyperlipidemia. Lab Anim 44, 135–140 (2015). https://doi.org/10.1038/laban.710

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban.710

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing