Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Note
  • Published:

Mortality associated with using medetomidine and ketamine for general anesthesia in pregnant and nonpregnant Wistar rats

Abstract

Medetomidine and ketamine are injectable drugs that can be used in combination to induce general anesthesia in rats. After noticing a high incidence of morbidity and mortality in pregnant Wistar rats given medetomidine and ketamine for anesthesia, the authors further investigated the effects of this combination of anesthetic drugs in both pregnant and nonpregnant Wistar rats. The time to recumbency and the duration of general anesthesia were similar between pregnant and nonpregnant rats. Pregnancy status did not affect the rats' pulse rate, respiratory rate, rectal temperature, oxygen saturation or perfusion index during 2 h of anesthesia. Pregnant rats had significantly lower blood glucose concentrations than nonpregnant rats at all time points, though blood glucose concentrations increased in both groups. The mortality rate was 15% both for nonpregnant rats and for pregnant rats. Researchers using medetomidine and ketamine to anesthetize Wistar rats should carefully monitor the rats in order to minimize mortality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mean pulse rate (beats per min) during anesthesia.
Figure 2: Mean respiratory rate (breaths per min) during anesthesia.
Figure 3: Mean rectal temperature during anesthesia.
Figure 4: Mean SpO2 during anesthesia.
Figure 5: Scatter plot showing correlation between PI and SpO2.
Figure 6: Mean blood glucose concentration (mmol/l) before (0 min) and after administration of anesthetics.

Similar content being viewed by others

References

  1. Flecknell, P. Laboratory Animal Anaesthesia 3rd edn. (Academic, Waltham, MA, 2009).

    Google Scholar 

  2. Hacker, S.O., White, C.E. & Black, I.H. A comparison of target-controlled infusion versus volatile inhalant anaesthesia for heart rate, respiratory rate, and recovery time in a rat model. Contemp. Top. Lab. Anim. Sci. 44, 7–12 (2005).

    CAS  PubMed  Google Scholar 

  3. Stowe, D.F. & Kevin, L.G. Cardiac preconditioning by volatile anesthetic agents: a defining role for altered mitochondrial bioenergetics. Antioxid. Redox. Signal. 6, 439–448 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Hashiguchi, H. et al. Isoflurane protects renal function against ischemia and reperfusion through inhibition of protein kinases, JNK and ERK. Anesth. Analg. 101, 1584–1589 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Steiger, H.J. & Hänggi, D. Ischaemic preconditioning of the brain, mechanisms and applications. Acta Neurochir. (Wien) 149, 1–10 (2007).

    Article  Google Scholar 

  6. Nevalainen, T., Pyhälä, L., Voipio, H.M. & Virtanen, R. Evaluation of anaesthetic potency of medetomidine-ketamine combination in rats, guinea-pigs and rabbits. Acta Vet. Scand. Suppl. 85, 139–143 (1989).

    CAS  PubMed  Google Scholar 

  7. Jang, H.S., Choi, H.S., Lee, S.H., Jang, K.H. & Lee, M. Evaluation of the anaesthetic effects of medetomidine and ketamine in rats and their reversal with atipamezole. Vet. Anaesth. Analg. 36, 319–327 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Roughan, J.V., Ojeda, O.B. & Flecknell, P.A. The influence of pre-anaesthetic administration of buprenorphine on the anaesthetic effects of ketamine/medetomidine and pentobarbitone in rats and the consequences of repeated anaesthesia. Lab. Anim. 33, 234–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Hedenqvist, P., Roughan, J.V. & Flecknell, P.A. Effects of repeated anaesthesia with ketamine/medetomidine and of preanaesthetic administration of buprenorphine in rats. Lab. Anim. 34, 207–211 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Moriondo, A. et al. Impact of respiratory pattern on lung mechanics and interstitial proteoglycans in spontaneously breathing anaesthetized healthy rats. Acta Physiol. (Oxf.) 203, 331–341 (2011).

    Article  CAS  Google Scholar 

  11. National Health and Medical Research Council, Australian Government. Australian Code of Practice for the Care and Use of Animals for Scientific Purposes 4th edn. (Australian Government, Canberra, Australia, 2004).

  12. Plumb, D.C. Plumb's Veterinary Drug Handbook 5th edn. (Blackwell, Ames, IA, 2005).

    Google Scholar 

  13. Hrapkiewicz, K. & Medina, L. (eds.) Clinical Laboratory Animal Medicine: An Introduction 3rd edn. (Blackwell, Oxford, UK, 2007).

    Google Scholar 

  14. Dugdale, A. Veterinary Anaesthesia: Principles to Practice Ch.18 (Wiley Blackwell, West Sussex, UK, 2010).

    Google Scholar 

  15. Wharfe, M.D., Mark, P.J. & Waddell, B.J. Circadian variation in placental and hepatic clock genes in rat pregnancy. Endocrinology 152, 3552–3560 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Johnson, C.A. Glucose homeostasis during canine pregnancy: insulin resistance, ketosis, and hypoglycemia. Theriogenology 70, 1418–1423 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Reddi, A.S., Oppermann, W., Strugatz, L.H., Cole, H.S. & Camerini-Davalos, R.A. Effect of pregnancy on serum alanine concentration in normal and genetically diabetic mice. Horm. Metab. Res. 8, 478–482 (1976).

    Article  CAS  PubMed  Google Scholar 

  18. Schlumbohm, C. & Harmeyer, J. Twin-pregnancy increases susceptibility of ewes to hypoglycaemic stress and pregnancy toxaemia. Res. Vet. Sci. 84, 286–299 (2008).

    Article  PubMed  Google Scholar 

  19. Herrera, E. Metabolic adaptations in pregnancy and their implications for the availability of substrates to the fetus. Eur. J. Clin. Nutr. 54, S47–S51 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Kanda, T. & Hikasa, Y. Effects of medetomidine and midazolam alone or in combination on the metabolic and neurohormonal responses in healthy cats. Can. J. Vet. Res. 72, 332–339 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zuurbier, C.J., Keijzers, P.J., Koeman, A., Van Wezel, H.B. & Hollmann, M.W. Anesthesia's effects on plasma glucose and insulin and cardiac hexokinase at similar hemodynamics and without major surgical stress in fed rats. Anesth. Analg. 106, 135–142 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Talukder, M.H. & Hikasa, Y. Diuretic effects of medetomidine compared with xylazine in healthy dogs. Can. J. Vet. Res. 73, 224–236 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Saleh, N. et al. Renal effects of medetomidine in isoflurane-anesthetized dogs with special reference to its diuretic action. J. Vet. Med. Sci. 67, 461–465 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Gellai, M. Modulation of vasopressin antidiuretic action by renal alpha 2-adrenoceptors. Am. J. Physiol. 259, F1–F8 (1990).

    CAS  PubMed  Google Scholar 

  25. Avsaroglu, H. et al. Strain differences in response to propofol, ketamine and medetomidine in rabbits. Vet. Rec. 152, 300 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Collins, T.B. Jr. & Lott, D.F. Stock and sex specificity in the response of rats to pentobarbital sodium. Lab. Anim. Care 18, 192–194 (1968).

    PubMed  Google Scholar 

  27. Sinclair, M.D. A review of the physiological effects of α2-agonists related to the clinical use of medetomidine in small animal practice. Can. Vet. J. 44, 885–897 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Amouzadeh, H.R., Sangiah, S., Qualls, C.W. Jr., Cowell, R.L. & Mauromoustakos, A. Xylazine-induced pulmonary edema in rats. Toxicol. Appl. Pharmacol. 108, 417–427 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Amouzadeh, H. et al. Biochemical and morphological alterations in xylazine-induced pulmonary edema. Toxicol. Pathol. 21, 562–571 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Leah Attwood (Animal Services, The University of Western Australia) for providing technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabrielle C. Musk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callahan, L., Ross, S., Jones, M. et al. Mortality associated with using medetomidine and ketamine for general anesthesia in pregnant and nonpregnant Wistar rats. Lab Anim 43, 208–214 (2014). https://doi.org/10.1038/laban.517

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban.517

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing