Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The iron status at birth of neonates with risk factors for developing iron deficiency: a pilot study

Abstract

Objective:

Small-for-gestational-age (SGA) neonates, infants of diabetic mothers (IDM) and very-low-birth weight premature neonates (VLBW) are reported to have increased risk for developing iron deficiency and possibly associated neurocognitive delays.

Study Design:

We conducted a pilot study to assess iron status at birth in at-risk neonates by measuring iron parameters in umbilical cord blood from SGA, IDM, VLBW and comparison neonates.

Results:

Six of the 50 infants studied had biochemical evidence of iron deficiency at birth. Laboratory findings consistent with iron deficiency were found in one SGA, one IDM, three VLBW, and one comparison infant. None of the infants had evidence of iron deficiency anemia.

Conclusions:

Evidence of biochemical iron deficiency at birth was found in 17% of screened neonates. Studies are needed to determine whether these infants are at risk for developing iron-limited erythropoiesis, iron deficiency anemia or iron-deficient neurocognitive delay.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Callahan LS, Thibert KA, Wobken JD, Georgieff MK . Early-life iron deficiency anemia alters the development and long-term expression of parvalbumin and perineuronal nets in the rat hippocampus. Dev Neurosci 2013; 35: 427–436.

    Article  CAS  PubMed  Google Scholar 

  2. Tran PV, Dakoji S, Reise KH, Storey KK, Georgieff MK . Fetal iron deficiency alters the proteome of adult rat hippocampal synaptosomes. Am J Physiol Regul Integr Comp Physiol 2013; 305: R1297–R1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fretham SJ, Carlson ES, Georgieff MK . The role of iron in learning and memory. Adv Nutr 2011; 2: 112–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Radlowski EC, Johnson RW . Perinatal iron deficiency and neurocognitive development. Front Hum Neurosci 2013; 7: 1–10.

    Article  Google Scholar 

  5. Zamora TG, Guiang SF 3rd, Widness JA, Georgieff MK . Iron is prioritized to red blood cells over the brain in phlebotomized anemic newborn lambs. Pediatr Res 2016; 79: 922–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mukhopadhyay K, Yadav RK, Kishore SS, Garewal G, Jain V, Narang A . Iron status at birth and at 4 weeks in term small-for-gestation infants in comparison with appropriate-for-gestation infants. J Matern Fetal Neonatal Med 2011; 7: 886–890.

    Article  Google Scholar 

  7. Rao R, Georgieff MK . Iron therapy for preterm infants. Clin Perinatol 2009; 36: 27–42.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hokama T, Takenaka S, Hirayama K, Yara A, Yoshida K, Itokazu K et al. Iron status of newborns born to iron deficient anaemic mothers. J Trop Pediatr 1996; 42: 75–77.

    Article  CAS  PubMed  Google Scholar 

  9. Emamghorashi F, Heidari T . Iron status of babies born to iron-deficient anaemic mothers in an Iranian hospital. East Mediterr Health J 2004; 10: 808–814.

    CAS  PubMed  Google Scholar 

  10. Gambling L, Lang C, McArdle HJ . Fetal regulation of iron transport during pregnancy. Am J Clin Nutr 2011; 94: 1903 S–1907 S.

    Article  Google Scholar 

  11. McArdle HJ, Lang C, Hayes H, Gambling L . Role of the placenta in regulation of fetal iron status. Nutr Rev 2011; 69: S17–S22.

    Article  PubMed  Google Scholar 

  12. Balesaria S, Hanif R, Salama MF, Raja K, Bayele HK, McArdle H et al. Fetal iron levels are regulated by maternal and fetal Hfe genotype and dietary iron. Haematologica 2012; 97: 661–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao C, Fleming MD . The placenta: the forgotten essential organ of iron transport. Nutr Rev 2016; 74: 421–431.

    Article  PubMed  PubMed Central  Google Scholar 

  14. . Goodnough LT, Nemeth E. Clinical features of iron deficiency. In: Greer JP, Arber DA, Glader B, List AF, Means Jr. RT, Paraskevas F et al. (eds). Wintrobe’s Clinical Hematology. 13th edn. Lippincott/Williams & Wilkins: Philadelphia, PA, USA. 2014. pp 626–627..

  15. Christensen RD, Henry E, Bennett ST, Yaish HM . Reference intervals for reticulocyte parameters of infants during their first 90 days after birth. J Perinatol 2016; 36: 61–66.

    Article  CAS  PubMed  Google Scholar 

  16. Lorenz L, Arand J, Büchner K, Wacker-Gussmann A, Peter A, Poets CF et al. Reticulocyte haemoglobin content as a marker of iron deficiency. Arch Dis Child Fetal Neonatal Ed 2015; 100: F198–F202.

    Article  PubMed  Google Scholar 

  17. Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L . Iron deficiency anaemia. Lancet 2016; 387: 907–916.

    Article  CAS  PubMed  Google Scholar 

  18. Baer VL, Lambert DK, Carroll PD, Gerday E, Christensen RD . Using umbilical cord blood for the initial blood tests of VLBW neonates results in higher hemoglobin and fewer RBC transfusions. J Perinatol 2013; 33: 363–365.

    Article  CAS  PubMed  Google Scholar 

  19. Jopling J, Henry E, Wiedmeier SE, Christensen RD . Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: data from a multihospital health care system. Pediatrics 2009; 123: e333–e337.

    PubMed  Google Scholar 

  20. Christensen RD, Jopling J, Henry E, Wiedmeier SE . The erythrocyte indices of neonates, defined using data from over 12,000 patients in a multihospital health care system. J Perinatol 2008; 28: 24–28.

    Article  CAS  PubMed  Google Scholar 

  21. McArdle HJ, Gambling L, Kennedy C . Iron deficiency during pregnancy: the consequences for placental function and fetal outcome. Proc Nutr Soc 2014; 73: 9-1.5.

    Article  Google Scholar 

  22. O'Brien KO, Zavaleta N, Abrams SA, Caulfield LE . Maternal iron status influences iron transfer to the fetus during the third trimester of pregnancy. Am J Clin Nutr 2003; 77: 924–930.

    Article  CAS  PubMed  Google Scholar 

  23. Sweet DG, Savage GA, Tubman R, Lappin TR, Halliday HL . Cord blood transferrin receptors to assess fetal iron status. Arch Dis Child Fetal Neonatal Ed 2001; 85: F46–F68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lozoff B, Beard J, Connor J, Felt B, Georgieff M, Schallert T . Lost-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 2006; 64: S34–S91.

    Article  PubMed  Google Scholar 

  25. Cheng CF, Zerzan JC, Johnson DB, Juul SE . Zinc protoporphyrin-to-heme ratios in high-risk and preterm infants. J Pediatr 2012; 161: 81–87.

    Article  CAS  PubMed  Google Scholar 

  26. Lott DG, Zimmerman M, Labbe RF, Kling PJ, Widness JA . Erythrocyte zinc protoporphyrin is elevated with prematurity and fetal hypoxemia. Pediatrics 2005; 116: 414–422.

    Article  PubMed  Google Scholar 

  27. Ward DM, Kaplan J . Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys Acta 2012; 1823: 1426–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kroot JJ, Tjalsma H, Fleming RE, Swinkels DW . Hepcidin in human iron disorders: diagnostic implications. Clin Chem 2011; 57: 1650–1669.

    Article  CAS  PubMed  Google Scholar 

  29. Lorenz L, Peter A, Poets CF, Franz AR . A review of cord blood concentrations of iron status parameters to define reference ranges for preterm infants. Neonatology 2013; 104: 194–202.

    Article  PubMed  Google Scholar 

  30. Rehu M, Punnonon K, Ostland V, Heinonen S, Westerman M, Pulkki K et al. Maternal serum hepcidin is low at term and independent of cord blood iron status. Eur J Haematol 2010; 85: 345–352.

    Article  CAS  PubMed  Google Scholar 

  31. McCarthy PJ, Zundel HR, Johnson KR, Blohowiak SE, Kling PJ . Impact of growth restriction and other prenatal risk factors on cord blood iron status in prematurity. J Pediatr Hematol Oncol 2016; 38: 210–215.

    Article  PubMed  Google Scholar 

  32. Akkermans MD, Uijterschout L, Abbink M, Vos P, Rovekamp-Abels L, Boersma B et al. Predictive factors of iron depletion in late preterm infants at the postnatal age of 6 weeks. Eur J Clin Nutr 2016; 70: 941–946.

    Article  CAS  PubMed  Google Scholar 

  33. Siddappa AM, Rao R, Long JD, Widness JA, Georgieff MK . The assessment of newborn iron stores at birth: a review of the literature and standards for ferritin concentrations. Neonatology 2007; 92: 73–82.

    Article  CAS  PubMed  Google Scholar 

  34. Lorenz L, Herbst J, Engel C, Peter A, Abele H, Poets CF et al. Gestational age-specific reference ranges of hepcidin in cord blood. Neonatology 2014; 106: 133–139.

    Article  CAS  PubMed  Google Scholar 

  35. Miller SM, McPherson RJ, Juul SE . Iron sulfate supplementation decreases zinc protoporphyrin to heme ratio in premature infants. J Pediatr 2006; 148: 44–48.

    Article  CAS  PubMed  Google Scholar 

  36. Sweet DG, Savage G, Tubman TR, Lappin TR, Halliday HL . Study of maternal influences on fetal iron status at term using cord blood transferrin receptors. Arch Dis Child Fetal Neonatal Ed 2001; 84: F40–F43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. American Academy of Pediatrics, Committee on NutritionNutritional needs of the preterm infant In: Kleinman RD (ed). Pediatric Nutrition Handbook vol. 5. American Academy of Pediatrics: Chapel Hill, NC, USA, 2004, pp 23–54.

    Google Scholar 

Download references

Acknowledgements

We thank the Metabolics Core from the University of Utah for assistance with mass spectrometry (DK110858). Funding was provided by the Division of Neonatology, University of Utah, ARUP Laboratories, Salt Lake City, UT, and Intermountain Healthcare, Salt Lake City, UT. This work was supported in part by the US National Institutes of Health (DK030534 to Diane Ward).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B C MacQueen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacQueen, B., Christensen, R., Ward, D. et al. The iron status at birth of neonates with risk factors for developing iron deficiency: a pilot study. J Perinatol 37, 436–440 (2017). https://doi.org/10.1038/jp.2016.234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2016.234

This article is cited by

Search

Quick links