Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Circulating miR-92a expression level in patients with essential hypertension: a potential marker of atherosclerosis

Subjects

Abstract

MicroRNAs (miRs) are key posttranscriptional regulators of gene expression in all eukaryotic cells and have a vital role in the evolution of hypertension and cardiovascular remodelling and, therefore, have emerged as potential biomarkers for cardiovascular disease. We assessed 240 participants, including 60 healthy volunteers with normal carotid intima-media thickness (nCIMT), 60 healthy volunteers with increased CIMT (iCIMT), 60 hypertensive patients with nCIMT and 60 hypertensive patients with iCIMT. All patients underwent measurements of CIMT, carotid-femoral pulse wave velocity (cfPWV) and ambulatory blood pressure (BP) monitoring. Plasma miR-92a expression was quantified by real-time reverse transcription PCR. Correlations between miR-92a expression and BP parameters, CIMT and cfPWV were assessed using the Spearman correlation coefficient. We observed the lowest miR-92a expression (24.59±1.30 vs 27.76±2.13 vs 29.29±1.89 vs 33.76±2.08; P<0.001) in healthy controls with nCIMT, followed by healthy controls with iCIMT, then hypertensive patients with nCIMT and the highest expression in hypertensive patients with iCIMT. Additionally, MiR-92a levels showed a significant positive correlation with 24-h mean systolic BP (r=0.807, P<0.001), 24-h mean diastolic BP (r=0.649, P<0.001), 24-h mean pulse pressure (PP) (r=0.697, P<0.001), 24-h daytime PP (r=0.654, P<0.001), 24-h nighttime PP (r=0.573, P<0.001), CIMT (r=0.571, P<0.001) and cfPWV (r=0.601, P<0.001). Our data present significant evidence that circulating miR-92a represents a potential noninvasive atherosclerosis marker in essential hypertensive patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014; 311 ((5)): 507–520.

    Article  CAS  Google Scholar 

  2. Weber MA, Schiffrin EL, White WB, Mann S, Lindholm LH, Kenerson JG et al. Clinical practice guidelines for the management of hypertension in the community a statement by the American Society of Hypertension and the International Society of Hypertension. J Hypertens 2014; 32 ((1)): 3–15.

    Article  CAS  Google Scholar 

  3. Daskalopoulou SS, Rabi DM, Zarnke KB, Dasgupta K, Nerenberg K, Cloutier L et al. The 2015 Canadian Hypertension Education Program recommendations for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can J Cardiol 2015; 31 ((5)): 549–568.

    Article  Google Scholar 

  4. Taylor J. . 2013 ESH/ESC guidelines for the management of arterial hypertension. Eur Heart J 2013; 34 ((28)): 2108–2109.

    PubMed  Google Scholar 

  5. Perlini S, Grassi G. . Hypertension-related target organ damage: is it a continuum? J Hypertens 2013; 31 ((6)): 1083–1085.

    Article  CAS  Google Scholar 

  6. Kriegel AJ, Baker MA, Liu Y, Liu P, Cowley AJ, Liang M. . Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes. Hypertension 2015; 66 ((4)): 793–799.

    Article  CAS  Google Scholar 

  7. Grassi G, Ram VS. . Evidence for a critical role of the sympathetic nervous system in hypertension. J Am Soc Hypertens 2016; 10 ((5)): 457–466.

    Article  CAS  Google Scholar 

  8. Caillon A, Schiffrin EL. . Role of inflammation and immunity in hypertension: recent epidemiological, laboratory, and clinical evidence. Curr Hypertens Rep 2016; 18 ((3)): 21.

    Article  Google Scholar 

  9. Itani HA, Dikalova AE, McMaster WG, Nazarewicz RR, Bikineyeva AT, Harrison DG et al. Mitochondrial cyclophilin D in vascular oxidative stress and hypertension. Hypertension 2016; 67 ((6)): 1218–1227.

    Article  CAS  Google Scholar 

  10. Ferroni P, Della-Morte D, Palmirotta R, Rundek T, Guadagni F, Roselli M. . Angiogenesis and hypertension: the dual role of anti-hypertensive and anti-angiogenic therapies. Curr Vasc Pharmacol 2012; 10 ((4)): 479–493.

    Article  CAS  Google Scholar 

  11. Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. . MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. J Am Soc Hypertens 2014; 8 ((6)): 368–375.

    Article  CAS  Google Scholar 

  12. Yan S, Han X, Xue H, Zhang P, Guo X, Li T et al. Let-7f inhibits glioma cell proliferation, migration, and invasion by targeting periostin. J Cell Biochem 2015; 116 ((8)): 1680–1692.

    Article  CAS  Google Scholar 

  13. Kumar S, Kim CW, Simmons RD, Jo H. . Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol 2014; 34 ((10)): 2206–2216.

    Article  CAS  Google Scholar 

  14. Riches K, Alshanwani AR, Warburton P, O'Regan DJ, Ball SG, Wood IC et al. Elevated expression levels of miR-143/5 in saphenous vein smooth muscle cells from patients with Type 2 diabetes drive persistent changes in phenotype and function. J Mol Cell Cardiol 2014; 74: 240–250.

    Article  CAS  Google Scholar 

  15. Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest 2012; 122 ((11)): 4190–4202.

    Article  CAS  Google Scholar 

  16. Tijsen AJ, Pinto YM, Creemers EE. . Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ Physiol 2012; 303 ((9)): H1085–H1095.

    Article  CAS  Google Scholar 

  17. Iaconetti C, Polimeni A, Sorrentino S, Sabatino J, Pironti G, Esposito G et al. Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res Cardiol 2012; 107 ((5)): 296.

    Article  Google Scholar 

  18. Loyer X, Potteaux S, Vion AC, Guerin CL, Boulkroun S, Rautou PE et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res 2014; 114 ((3)): 434–443.

    Article  CAS  Google Scholar 

  19. Nam HJ, Jung IH, Kim J, Kim JH, Suh J, Kim HS et al. Association between brachial-ankle pulse wave velocity and occult coronary artery disease detected by multi-detector computed tomography. Int J Cardiol 2012; 157 ((2)): 227–232.

    Article  Google Scholar 

  20. Avramovski P, Avramovska M, Sikole A . Bone strength and arterial stiffness impact on cardiovascular mortality in a general population. J Osteoporos 2016; 2016: 7030272.

    Article  Google Scholar 

  21. Greve SV, Blicher MK, Kruger R, Sehestedt T, Gram-Kampmann E, Rasmussen S et al. Estimated carotid-femoral pulse wave velocity has similar predictive value as measured carotid-femoral pulse wave velocity. J Hypertens 2016; 34 ((7)): 1279–1289.

    Article  CAS  Google Scholar 

  22. McCloskey K, Sun C, Pezic A, Cochrane J, Morley R, Vuillermin P et al. The effect of known cardiovascular risk factors on carotid-femoral pulse wave velocity in school-aged children: a population based twin study. J Dev Orig Health Dis 2014; 5 ((4)): 307–313.

    Article  CAS  Google Scholar 

  23. Eikendal AL, Groenewegen KA, Bots ML, Peters SA, Uiterwaal CS, den Ruijter HM. . Relation between adolescent cardiovascular risk factors and carotid intima-media echogenicity in healthy young adults: the Atherosclerosis Risk in Young Adults (ARYA) Study. J Am Heart Assoc 2016; 5 ((5)): e002941–e002950.

    Article  Google Scholar 

  24. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M et al2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 2013; 34 ((28)): 2159–2219.

    Article  Google Scholar 

  25. Cuspidi C, Sala C, Tadic M, Gherbesi E, Grassi G, Mancia G . Nocturnal hypertension and subclinical cardiac and carotid damage: an updated review and meta-analysis of echocardiographic studies. J Clin Hypertens (Greenwich) (e-pub ahead of print 18 February2016; doi:10.1111/jch.12790).

  26. Cardellini M, Marini MA, Frontoni S, Hribal ML, Andreozzi F, Perticone F et al. Carotid artery intima-media thickness is associated with insulin-mediated glucose disposal in nondiabetic normotensive offspring of type 2 diabetic patients. Am J Physiol Endocrinol Metab 2007; 292 ((1)): E347–E352.

    Article  CAS  Google Scholar 

  27. Bonny A, Lacombe F, Yitemben M, Discazeaux B, Donetti J, Fahri P et al. The 2007 ESH/ESC guidelines for the management of arterial hypertension. J Hypertens 2008; 26 ((4)): 825.

    Article  CAS  Google Scholar 

  28. Wang JH, Lee CJ, Chen ML, Yang CF, Chen YC, Hsu BG. . Association of serum osteoprotegerin levels with carotid-femoral pulse wave velocity in hypertensive patients. J Clin Hypertens (Greenwich) 2014; 16 ((4)): 301–308.

    Article  CAS  Google Scholar 

  29. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105 ((30)): 10513–10518.

    Article  CAS  Google Scholar 

  30. Kang K, Zhang X, Liu H, Wang Z, Zhong J, Huang Z et al. A novel real-time PCR assay of microRNAs using S-Poly(T), a specific oligo(dT) reverse transcription primer with excellent sensitivity and specificity. PLoS ONE 2012; 7 ((11)): e48536.

    Article  CAS  Google Scholar 

  31. Baraniskin A, Nopel-Dunnebacke S, Ahrens M, Jensen SG, Zollner H, Maghnouj A et al. Circulating U2 small nuclear RNA fragments as a novel diagnostic biomarker for pancreatic and colorectal adenocarcinoma. Int J Cancer 2013; 132 ((2)): E48–E57.

    Article  CAS  Google Scholar 

  32. Akhtar S, Hartmann P, Karshovska E, Rinderknecht FA, Subramanian P, Gremse F et al. Endothelial hypoxia-inducible factor-1alpha promotes atherosclerosis and monocyte recruitment by upregulating microRNA-19a. Hypertension 2015; 66 ((6)): 1220–1226.

    Article  CAS  Google Scholar 

  33. De Paoli F, Staels B, Chinetti-Gbaguidi G. . Macrophage phenotypes and their modulation in atherosclerosis. Circ J 2014; 78 ((8)): 1775–1781.

    Article  CAS  Google Scholar 

  34. Wang C, Wen J, Zhou Y, Li L, Cui X, Wang J et al. Apelin induces vascular smooth muscle cells migration via a PI3K/Akt/FoxO3a/MMP-2 pathway. Int J Biochem Cell Biol 2015; 69: 173–182.

    Article  CAS  Google Scholar 

  35. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18 ((10)): 997–1006.

    Article  CAS  Google Scholar 

  36. Sun Q, Jia X, Gao J, Zhang P, Mou W, Yang C et al. Identification and characterization of novel serum microRNAs in unstable angina pectoris and subclinical atherosclerotic patients. Exp Cell Res 2015; 333 ((2)): 220–227.

    Article  CAS  Google Scholar 

  37. Mishra PK, Tyagi N, Kumar M, Tyagi SC. . MicroRNAs as a therapeutic target for cardiovascular diseases. J Cell Mol Med 2009; 13 ((4)): 778–789.

    Article  CAS  Google Scholar 

  38. Fang Y, Davies PF. . Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 2012; 32 ((4)): 979–987.

    Article  CAS  Google Scholar 

  39. Wu W, Xiao H, Laguna-Fernandez A, Villarreal GJ, Wang KC, Geary GG et al. Flow-dependent regulation of Kruppel-like factor 2 is mediated by microRNA-92a. Circulation 2011; 124 ((5)): 633–641.

    Article  CAS  Google Scholar 

  40. Yu S, Hong Q, Wang Y, Hou K, Wang L, Zhang Y et al. High concentrations of uric acid inhibit angiogenesis via regulation of the Kruppel-like factor 2-vascular endothelial growth factor-A axis by miR-92a. Circ J 2015; 79 ((11)): 2487–2498.

    Article  CAS  Google Scholar 

  41. Garcia-Palmieri MR, Crespo CJ, Mc GD, Sempos C, Smit E, Sorlie PD. . Wide pulse pressure is an independent predictor of cardiovascular mortality in Puerto Rican men. Nutr Metab Cardiovasc Dis 2005; 15 ((1)): 71–78.

    Article  Google Scholar 

  42. Cecelja M, Chowienczyk P. . Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension 2009; 54 ((6)): 1328–1336.

    Article  CAS  Google Scholar 

  43. Kim ES, Mo EY, Moon SD, Han JH. . Mean platelet volume is closely associated with serum glucose level but not with arterial stiffness and carotid atherosclerosis in patients with type 2 diabetes. J Clin Endocrinol Metab 2015; 100 ((9)): 3502–3508.

    Article  CAS  Google Scholar 

  44. Simon A, Gariepy J, Chironi G, Megnien JL, Levenson J. . Intima-media thickness: a new tool for diagnosis and treatment of cardiovascular risk. J Hypertens 2002; 20 ((2)): 159–169.

    Article  CAS  Google Scholar 

  45. Zuo G, Zhang M, Jia X, Zheng L, Li Y, Zhao H et al. Correlation between brachial-ankle pulse wave velocity, carotid artery intima-media thickness, ankle-brachial index, and the severity of coronary lesions. Cell Biochem Biophys 2014; 70 ((2)): 1205–1211.

    Article  CAS  Google Scholar 

  46. Qin J, Liang H, Shi D, Dai J, Xu Z, Chen D et al. A panel of microRNAs as a new biomarkers for the detection of deep vein thrombosis. J Thromb Thrombolysis 2015; 39 ((2)): 215–221.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the participating volunteers for their efforts and contributions. This work was supported by the grants from Guangdong Natural Science Foundation (No. S2013010016575, No. 2015A030313660), the Technology Project Foundation of Guangzhou (No. 2014y2-00140, No. 1563000381) and the Technology Project Foundation of Guangdong Province (No. 2014B020212008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-q Feng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Tang, S., Ji-yan, C. et al. Circulating miR-92a expression level in patients with essential hypertension: a potential marker of atherosclerosis. J Hum Hypertens 31, 200–205 (2017). https://doi.org/10.1038/jhh.2016.66

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2016.66

This article is cited by

Search

Quick links