Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Functional VEGF haplotypes affect the susceptibility to hypertension

Abstract

We examined whether vascular endothelial growth factor (VEGF) polymorphisms (C-2578A, G-1154A and G-634C) are associated with hypertension, response to antihypertensive therapy and nitric oxide (NO) formation. Substudy 1 compared the distribution of VEGF genotypes and haplotypes in 178 patients with arterial hypertension (100 whites and 78 blacks) and 186 healthy controls (115 whites and 71 blacks). Substudy 2 compared the distribution of VEGF markers in 82 patients with controlled hypertension, 89 patients with resistant hypertension and 101 normotensive (NT) patients. In substudy 3, plasma nitrite/nitrate (NOx) levels were determined (chemiluminescence assay) in 64 NT subjects and 48 hypertensive (HTN) subjects, and the distribution of VEGF markers was compared in subjects having low NOx with subjects having high NOx. Although the substudy 1 showed no differences in genotypes or allele distributions for the three VEGF polymorphisms between NT and HTN subjects, the ‘C-A-G’ haplotype was more common in white NT subjects than in the white HTN subjects, and the ‘C-A-C’ haplotype was more frequent in black and white HTN subjects than in black and white NT subjects. The substudy 2 showed similar results, with no differences between responsive and resistant HTN subjects. The substudy 3 showed that the ‘C-A-G’ haplotype, which had a protective effect against hypertension, was significantly more common in subjects with higher NOx concentrations than in subjects with lower NOx concentrations. VEGF haplotypes are associated with hypertension, and the haplotype associated with normotension was more common in subjects with increased NO formation, possibly offering a mechanistic clue for our findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Ferrara N, Gerber HP, LeCouter J . The biology of VEGF and its receptors. Nat Med 2003; 9 (6): 669–676.

    Article  CAS  Google Scholar 

  2. Hutchings H, Ortega N, Plouet J . Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. Faseb J 2003; 17 (11): 1520–1522.

    Article  CAS  PubMed Central  Google Scholar 

  3. Sandhofer A, Tatarczyk T, Kirchmair R, Iglseder B, Paulweber B, Patsch JR et al. Are plasma VEGF and its soluble receptor sFlt-1 atherogenic risk factors? Cross-sectional data from the SAPHIR study. Atherosclerosis 2009; 206: 265–269.

    Article  CAS  PubMed Central  Google Scholar 

  4. He H, Venema VJ, Gu X, Venema RC, Marrero MB, Caldwell RB . Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J Biol Chem 1999; 274 (35): 25130–25135.

    Article  CAS  PubMed Central  Google Scholar 

  5. Yla-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J . Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol 2007; 49 (10): 1015–1026.

    Article  PubMed Central  Google Scholar 

  6. Sandrim VC, Palei AC, Cavalli RC, Araujo FM, Ramos ES, Duarte G et al. Vascular endothelial growth factor genotypes and haplotypes are associated with pre-eclampsia but not with gestational hypertension. Mol Hum Reprod 2009; 15 (2): 115–120.

    Article  CAS  Google Scholar 

  7. Girnita DM, Webber SA, Ferrell R, Burckart GJ, Brooks MM, McDade KK et al. Disparate distribution of 16 candidate single nucleotide polymorphisms among racial and ethnic groups of pediatric heart transplant patients. Transplantation 2006; 82 (12): 1774–1780.

    Article  CAS  PubMed Central  Google Scholar 

  8. Lambrechts D, Storkebaum E, Morimoto M, Del-Favero J, Desmet F, Marklund SL et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet 2003; 34 (4): 383–394.

    Article  CAS  PubMed Central  Google Scholar 

  9. Goncalves FM, Martins-Oliveira A, Speciali JG, Izidoro-Toledo TC, Luizon MR, Dach F et al. Vascular endothelial growth factor genetic polymorphisms and haplotypes in women with migraine. DNA Cell Biol 2010; 29 (7): 357–362.

    Article  CAS  PubMed Central  Google Scholar 

  10. Ku DD, Zaleski JK, Liu S, Brock TA . Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am J Physiol 1993; 265 (2 Part 2): H586–H592.

    CAS  PubMed  Google Scholar 

  11. Wei W, Jin H, Chen ZW, Zioncheck TF, Yim AP, He GW . Vascular endothelial growth factor-induced nitric oxide- and PGI2-dependent relaxation in human internal mammary arteries: a comparative study with KDR and Flt-1 selective mutants. J Cardiovasc Pharmacol 2004; 44 (5): 615–621.

    Article  CAS  Google Scholar 

  12. Liu MH, Jin HK, Floten HS, Yang Q, Yim AP, Furnary A et al. Vascular endothelial growth factor-mediated endothelium-dependent relaxation is blunted in spontaneously hypertensive rats. J Pharmacol Exp Ther 2001; 296 (2): 473–477.

    CAS  PubMed  Google Scholar 

  13. Vyzantiadis T, Karagiannis A, Douma S, Harsoulis P, Vyzantiadis A, Zamboulis C . Vascular endothelial growth factor and nitric oxide serum levels in arterial hypertension. Clin Exp Hypertens 2006; 28 (7): 603–609.

    Article  CAS  Google Scholar 

  14. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G . Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987; 84 (24): 9265–9269.

    Article  CAS  PubMed Central  Google Scholar 

  15. Thomas GD, Zhang W, Victor RG . Nitric oxide deficiency as a cause of clinical hypertension: promising new drug targets for refractory hypertension. Jama 2001; 285 (16): 2055–2057.

    Article  CAS  Google Scholar 

  16. Muniz JJ, Izidoro-Toledo TC, Metzger IF, Sandrim VC, Tanus-Santos JE . Interethnic differences in the distribution of clinically relevant vascular endothelial growth factor genetic polymorphisms. DNA Cell Biol 2009; 28 (11): 567–572.

    Article  CAS  Google Scholar 

  17. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. Jama 2003; 289 (19): 2560–2572.

    Article  CAS  Google Scholar 

  18. Nagassaki S, Metzger IF, Souza-Costa DC, Marroni AS, Uzuelli JA, Tanus-Santos JE . eNOS genotype is without effect on circulating nitrite/nitrate level in healthy male population. Thromb Res 2005; 115 (5): 375–379.

    Article  CAS  Google Scholar 

  19. Sandrim VC, de Syllos RW, Lisboa HR, Tres GS, Tanus-Santos JE . Influence of eNOS haplotypes on the plasma nitric oxide products concentrations in hypertensive and type 2 diabetes mellitus patients. Nitric Oxide 2007; 16 (3): 348–355.

    Article  CAS  PubMed Central  Google Scholar 

  20. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA . Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 2002; 70 (2): 425–434.

    Article  PubMed Central  Google Scholar 

  21. Sandrim VC, Coelho EB, Nobre F, Arado GM, Lanchote VL, Tanus-Santos JE . Susceptible and protective eNOS haplotypes in hypertensive black and white subjects. Atherosclerosis 2006; 186 (2): 428–432.

    Article  CAS  PubMed Central  Google Scholar 

  22. Crawford DC, Nickerson DA . Definition and clinical importance of haplotypes. Annu Rev Med 2005; 56: 303–320.

    Article  CAS  PubMed Central  Google Scholar 

  23. Cardon LR, Bell JI . Association study designs for complex diseases. Nat Rev Genet 2001; 2 (2): 91–99.

    Article  CAS  PubMed Central  Google Scholar 

  24. Kaufman JS . How inconsistencies in racial classification demystify the race construct in public health statistics. Epidemiology 1999; 10 (2): 101–103.

    Article  CAS  PubMed Central  Google Scholar 

  25. Palmirotta R, Ferroni P, Ludovici G, Martini F, Savonarola A, D'Alessandro R et al. VEGF-A gene promoter polymorphisms and microvascular complications in patients with essential hypertension. Clin Biochem 2010; 43 (13-14): 1090–1095.

    Article  CAS  PubMed Central  Google Scholar 

  26. Kaplan NM . Resistant hypertension. J Hypertens 2005; 23 (8): 1441–1444.

    Article  CAS  Google Scholar 

  27. Nadar SK, Blann A, Beevers DG, Lip GY . Abnormal angiopoietins 1&2, angiopoietin receptor Tie-2 and vascular endothelial growth factor levels in hypertension: relationship to target organ damage [a sub-study of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)]. J Intern Med 2005; 258 (4): 336–343.

    Article  CAS  PubMed Central  Google Scholar 

  28. Tsai WC, Li YH, Huang YY, Lin CC, Chao TH, Chen JH . Plasma vascular endothelial growth factor as a marker for early vascular damage in hypertension. Clin Sci (Lond) 2005; 109 (1): 39–43.

    Article  CAS  Google Scholar 

  29. Ayerden Ebinc F, Haksun E, Ulver DB, Koc E, Erten Y, Reis Altok K et al. The relationship between vascular endothelial growth factor (VEGF) and microalbuminuria in patients with essential hypertension. Intern Med 2008; 47 (17): 1511–1516.

    Article  PubMed Central  Google Scholar 

  30. Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E . Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 1998; 18 (6): 3112–3119.

    Article  CAS  PubMed Central  Google Scholar 

  31. Akiri G, Nahari D, Finkelstein Y, Le SY, Elroy-Stein O, Levi BZ . Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene 1998; 17 (2): 227–236.

    Article  CAS  Google Scholar 

  32. Stevens A, Soden J, Brenchley PE, Ralph S, Ray DW . Haplotype analysis of the polymorphic human vascular endothelial growth factor gene promoter. Cancer Res 2003; 63 (4): 812–816.

    CAS  PubMed  Google Scholar 

  33. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM . Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999; 399 (6736): 601–605.

    Article  CAS  Google Scholar 

  34. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350 (23): 2335–2342.

    Article  CAS  Google Scholar 

  35. Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 2003; 100 (14): 8372–8377.

    Article  CAS  Google Scholar 

  36. Rosenberg SA, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ et al. Inability to immunize patients with metastatic melanoma using plasmid DNA encoding the gp100 melanoma-melanocyte antigen. Hum Gene Ther 2003; 14 (8): 709–714.

    Article  CAS  PubMed Central  Google Scholar 

  37. Miller KD, Chap LI, Holmes FA, Cobleigh MA, Marcom PK, Fehrenbacher L et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 2005; 23 (4): 792–799.

    Article  CAS  PubMed Central  Google Scholar 

  38. Robinson ES, Khankin EV, Choueiri TK, Dhawan MS, Rogers MJ, Karumanchi SA et al. Suppression of the nitric oxide pathway in metastatic renal cell carcinoma patients receiving vascular endothelial growth factor-signaling inhibitors. Hypertension 2010; 56 (6): 1131–1136.

    Article  CAS  PubMed Central  Google Scholar 

  39. Rhodes P, Leone AM, Francis PL, Struthers AD, Moncada S, Rhodes PM . The L-arginine:nitric oxide pathway is the major source of plasma nitrite in fasted humans. Biochem Biophys Res Commun 1995; 209 (2): 590–596.

    Article  CAS  Google Scholar 

  40. Forte P, Copland M, Smith LM, Milne E, Sutherland J, Benjamin N . Basal nitric oxide synthesis in essential hypertension. Lancet 1997; 349 (9055): 837–842.

    Article  CAS  Google Scholar 

  41. Tsuda K, Nishio I . Leptin and nitric oxide production in normotensive and hypertensive men. Obes Res 2004; 12 (8): 1223–1237.

    Article  CAS  PubMed Central  Google Scholar 

  42. Silva PS, Fontana V, Palei AC, Sertorio JT, Biagi C, Tanus-Santos JE . Antihypertensive effects exerted by enalapril in mild to moderate hypertension are not associated with changes in the circulating levels of nitric oxide-related markers. Eur J Clin Pharmacol 2011; 67 (4): 365–370.

    Article  CAS  PubMed Central  Google Scholar 

  43. Kelm M, Feelisch M, Deussen A, Strauer BE, Schrader J . Release of endothelium derived nitric oxide in relation to pressure and flow. Cardiovasc Res 1991; 25 (10): 831–836.

    Article  CAS  PubMed Central  Google Scholar 

  44. Kohno M, Yokokawa K, Minami M, Yasunari K, Maeda K, Kano H et al. Plasma levels of nitric oxide and related vasoactive factors following long-term treatment with angiotensin-converting enzyme inhibitor in patients with essential hypertension. Metabolism 1999; 48 (10): 1256–1259.

    Article  CAS  PubMed Central  Google Scholar 

  45. Nagassaki S, Sertorio JT, Metzger IF, Bem AF, Rocha JB, Tanus-Santos JE . eNOS gene T-786C polymorphism modulates atorvastatin-induced increase in blood nitrite. Free Radic Biol Med 2006; 41 (7): 1044–1049.

    Article  CAS  PubMed Central  Google Scholar 

  46. Metzger IF, Sertorio JT, Tanus-Santos JE . Relationship between systemic nitric oxide metabolites and cyclic GMP in healthy male volunteers. Acta Physiol (Oxf) 2006; 188 (2): 123–127.

    Article  CAS  Google Scholar 

  47. Metzger IF, Sertorio JT, Tanus-Santos JE . Modulation of nitric oxide formation by endothelial nitric oxide synthase gene haplotypes. Free Radic Biol Med 2007; 43 (6): 987–992.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the Fundação de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP-Brazil), Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Tanus-Santos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandrim, V., Luizon, M., Izidoro-Toledo, T. et al. Functional VEGF haplotypes affect the susceptibility to hypertension. J Hum Hypertens 27, 31–37 (2013). https://doi.org/10.1038/jhh.2011.110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2011.110

Keywords

This article is cited by

Search

Quick links